我在上次面试中遇到的一个问题是:

设计函数f,使得:f(f(n))==-n其中n是32位有符号整数;你不能用复数算术。如果你不能为整个数字范围设计这样的函数,那么就尽可能为最大范围设计它。

有什么想法吗?


当前回答

很简单,只需让f返回看起来等于任何整数的值,并且可以从整数转换。

public class Agreeable
{
    public static bool operator==(Agreeable c, int n)
        { return true; }

    public static bool operator!=(Agreeable c, int n)
        { return false; }

    public static implicit operator Agreeable(int n)
        { return new Agreeable(); }
}

class Program
{
    public static Agreeable f(Agreeable c)
        { return c; }

    static void Main(string[] args)
    {
        Debug.Assert(f(f(0)) == 0);
        Debug.Assert(f(f(5)) == -5);
        Debug.Assert(f(f(-5)) == 5);
        Debug.Assert(f(f(int.MaxValue)) == -int.MaxValue);
    }
}

其他回答

也许我错过了什么?

这不是简单的事情吗

    function f(n)
    {
        if(n ==0 || n < 0){return n;}
        return n * -1;
    }

编辑:

所以我错过了阅读问题,嗯哼,所以:

    function f(n)
    {
        if(!c(n,"z")&&!c(n,"n")){if(n==0){return "z"+n;}return "n"+n;}
        if( c(n,"z")){return 0;}return parseInt(n.replace("n",""))*-1;
    }
    function c(x,y){return x.indexOf(y) !==-1;}

丑陋但有效。

C++中的另一个作弊解决方案是运算符重载。

struct func {
    int n;
    func operator()(int k) { n = -k; return *this; }
    int operator()(const func &inst) { return inst.n; }
} f;

Python 2.6:

f = lambda n: (n % 2 * n or -n) + (n > 0) - (n < 0)

我意识到这对讨论毫无帮助,但我无法抗拒。

f(n) { return -1 * abs(n) }

如何处理溢出问题?还是我错过了重点?

int j = 0;

void int f(int n)
{    
    j++;

    if(j==2)
    {
       j = 0;
       return -n;
    }

    return n;
}

:D