我如何确定两条直线是否相交,如果相交,在x,y点处?
当前回答
以下是对加文回答的改进。马普的解决方案也类似,但都没有推迟分割。
这实际上也是Gareth Rees的答案的一个实际应用,因为向量积在2D中的等价是补点积,这段代码用了其中的三个。切换到3D并使用叉积,在最后插入s和t,结果是3D中直线之间的两个最近点。 不管怎样,2D解:
int get_line_intersection(float p0_x, float p0_y, float p1_x, float p1_y,
float p2_x, float p2_y, float p3_x, float p3_y, float *i_x, float *i_y)
{
float s02_x, s02_y, s10_x, s10_y, s32_x, s32_y, s_numer, t_numer, denom, t;
s10_x = p1_x - p0_x;
s10_y = p1_y - p0_y;
s32_x = p3_x - p2_x;
s32_y = p3_y - p2_y;
denom = s10_x * s32_y - s32_x * s10_y;
if (denom == 0)
return 0; // Collinear
bool denomPositive = denom > 0;
s02_x = p0_x - p2_x;
s02_y = p0_y - p2_y;
s_numer = s10_x * s02_y - s10_y * s02_x;
if ((s_numer < 0) == denomPositive)
return 0; // No collision
t_numer = s32_x * s02_y - s32_y * s02_x;
if ((t_numer < 0) == denomPositive)
return 0; // No collision
if (((s_numer > denom) == denomPositive) || ((t_numer > denom) == denomPositive))
return 0; // No collision
// Collision detected
t = t_numer / denom;
if (i_x != NULL)
*i_x = p0_x + (t * s10_x);
if (i_y != NULL)
*i_y = p0_y + (t * s10_y);
return 1;
}
基本上,它将除法延迟到最后一刻,并将大多数测试移动到某些计算完成之前,从而增加了早期退出。最后,它还避免了直线平行时的除零情况。
您可能还想考虑使用ε检验,而不是与零比较。非常接近平行的线会产生稍微偏离的结果。这不是一个bug,这是浮点数学的一个限制。
其他回答
上面有很多解决方案,但我认为下面的解决方案很简单,很容易理解。
矢量AB和矢量CD相交当且仅当
端点a和b在线段CD的两边。 端点c和d在线段AB的对边。
更具体地说,a和b在线段CD的对面当且仅当两个三元组中有一个是逆时针顺序的。
Intersect(a, b, c, d)
if CCW(a, c, d) == CCW(b, c, d)
return false;
else if CCW(a, b, c) == CCW(a, b, d)
return false;
else
return true;
这里的CCW代表逆时针,根据点的方向返回真/假。
来源:http://compgeom.cs.uiuc.edu/~jeffe/teaching/373/notes/x06-sweepline.pdf 第二页
如果矩形的每条边都是一条线段,并且用户绘制的部分也是一条线段,那么您只需检查用户绘制的线段是否与四条边线段相交。这应该是一个相当简单的练习,给定每个段的起点和终点。
根据t3chb0t的答案:
int intersezione_linee(int x1, int y1, int x2, int y2, int x3, int y3, int x4, int y4, int& p_x, int& p_y)
{
//L1: estremi (x1,y1)(x2,y2) L2: estremi (x3,y3)(x3,y3)
int d;
d = (x1-x2)*(y3-y4) - (y1-y2)*(x3-x4);
if(!d)
return 0;
p_x = ((x1*y2-y1*x2)*(x3-x4) - (x1-x2)*(x3*y4-y3*x4))/d;
p_y = ((x1*y2-y1*x2)*(y3-y4) - (y1-y2)*(x3*y4-y3*x4))/d;
return 1;
}
int in_bounding_box(int x1, int y1, int x2, int y2, int p_x, int p_y)
{
return p_x>=x1 && p_x<=x2 && p_y>=y1 && p_y<=y2;
}
int intersezione_segmenti(int x1, int y1, int x2, int y2, int x3, int y3, int x4, int y4, int& p_x, int& p_y)
{
if (!intersezione_linee(x1,y1,x2,y2,x3,y3,x4,y4,p_x,p_y))
return 0;
return in_bounding_box(x1,y1,x2,y2,p_x,p_y) && in_bounding_box(x3,y3,x4,y4,p_x,p_y);
}
下面是一个基本的c#线段实现,并有相应的交点检测代码。它需要一个名为Vector2f的2D向量/点结构,不过你可以用任何其他具有X/Y属性的类型替换它。如果更适合你的需要,你也可以用double替换float。
这段代码用于我的. net物理库Boing。
public struct LineSegment2f
{
public Vector2f From { get; }
public Vector2f To { get; }
public LineSegment2f(Vector2f @from, Vector2f to)
{
From = @from;
To = to;
}
public Vector2f Delta => new Vector2f(To.X - From.X, To.Y - From.Y);
/// <summary>
/// Attempt to intersect two line segments.
/// </summary>
/// <remarks>
/// Even if the line segments do not intersect, <paramref name="t"/> and <paramref name="u"/> will be set.
/// If the lines are parallel, <paramref name="t"/> and <paramref name="u"/> are set to <see cref="float.NaN"/>.
/// </remarks>
/// <param name="other">The line to attempt intersection of this line with.</param>
/// <param name="intersectionPoint">The point of intersection if within the line segments, or empty..</param>
/// <param name="t">The distance along this line at which intersection would occur, or NaN if lines are collinear/parallel.</param>
/// <param name="u">The distance along the other line at which intersection would occur, or NaN if lines are collinear/parallel.</param>
/// <returns><c>true</c> if the line segments intersect, otherwise <c>false</c>.</returns>
public bool TryIntersect(LineSegment2f other, out Vector2f intersectionPoint, out float t, out float u)
{
var p = From;
var q = other.From;
var r = Delta;
var s = other.Delta;
// t = (q − p) × s / (r × s)
// u = (q − p) × r / (r × s)
var denom = Fake2DCross(r, s);
if (denom == 0)
{
// lines are collinear or parallel
t = float.NaN;
u = float.NaN;
intersectionPoint = default(Vector2f);
return false;
}
var tNumer = Fake2DCross(q - p, s);
var uNumer = Fake2DCross(q - p, r);
t = tNumer / denom;
u = uNumer / denom;
if (t < 0 || t > 1 || u < 0 || u > 1)
{
// line segments do not intersect within their ranges
intersectionPoint = default(Vector2f);
return false;
}
intersectionPoint = p + r * t;
return true;
}
private static float Fake2DCross(Vector2f a, Vector2f b)
{
return a.X * b.Y - a.Y * b.X;
}
}
问题C:如何检测两条线段是否相交?
我也搜索过同样的话题,但我对答案并不满意。所以我写了一篇文章,非常详细地解释了如何检查两条线段是否与大量图像相交。这是完整的(并经过测试的)java代码。
以下是这篇文章,截取了最重要的部分:
检查线段a是否与线段b相交的算法如下所示:
什么是边界框?下面是两个线段的边界框:
如果两个边界框都有交点,则移动线段a,使其中一点在(0|0)处。现在你有了一条经过a定义的原点的直线,现在以同样的方式移动线段b,检查线段b的新点是否在直线a的不同两侧。如果是这样,则反过来检查。如果也是这样,线段相交。如果不相交,它们就不相交。
问题A:两条线段在哪里相交?
你知道两条线段a和b相交。如果你不知道,用我在C题中给你的工具检查一下。
现在你可以通过一些情况,并得到解决与七年级数学(见代码和交互示例)。
问题B:你如何检测两条线是否相交?
假设点A = (x1, y1)点B = (x2, y2) C = (x_3, y_3) D = (x_4, y_4) 第一行由AB定义(A != B),第二行由CD定义(C != D)。
function doLinesIntersect(AB, CD) {
if (x1 == x2) {
return !(x3 == x4 && x1 != x3);
} else if (x3 == x4) {
return true;
} else {
// Both lines are not parallel to the y-axis
m1 = (y1-y2)/(x1-x2);
m2 = (y3-y4)/(x3-x4);
return m1 != m2;
}
}
问题D:两条直线在哪里相交?
检查问题B,它们是否相交。
直线a和b由每条直线上的两个点定义。 你基本上可以用和问题A相同的逻辑。