我如何确定两条直线是否相交,如果相交,在x,y点处?
当前回答
FWIW,下面的函数(在C中)既检测线的交点,又确定交点。这是基于Andre LeMothe的“Tricks of the Windows Game Programming Gurus”中的一个算法。这与其他答案(例如Gareth的答案)中的一些算法并没有什么不同。然后LeMothe使用克莱默法则(不要问我)来解这些方程。
我可以证明它在我的小行星克隆中起作用,并且似乎正确地处理了Elemental, Dan和Wodzu在其他答案中描述的边缘情况。它也可能比KingNestor发布的代码快,因为它都是乘法和除法,没有平方根!
我想这里有一些除以0的可能性,尽管在我的例子中这不是问题。很容易修改以避免崩溃。
// Returns 1 if the lines intersect, otherwise 0. In addition, if the lines
// intersect the intersection point may be stored in the floats i_x and i_y.
char get_line_intersection(float p0_x, float p0_y, float p1_x, float p1_y,
float p2_x, float p2_y, float p3_x, float p3_y, float *i_x, float *i_y)
{
float s1_x, s1_y, s2_x, s2_y;
s1_x = p1_x - p0_x; s1_y = p1_y - p0_y;
s2_x = p3_x - p2_x; s2_y = p3_y - p2_y;
float s, t;
s = (-s1_y * (p0_x - p2_x) + s1_x * (p0_y - p2_y)) / (-s2_x * s1_y + s1_x * s2_y);
t = ( s2_x * (p0_y - p2_y) - s2_y * (p0_x - p2_x)) / (-s2_x * s1_y + s1_x * s2_y);
if (s >= 0 && s <= 1 && t >= 0 && t <= 1)
{
// Collision detected
if (i_x != NULL)
*i_x = p0_x + (t * s1_x);
if (i_y != NULL)
*i_y = p0_y + (t * s1_y);
return 1;
}
return 0; // No collision
}
顺便说一句,我必须说,在LeMothe的书中,虽然他显然得到了正确的算法,但他展示的具体示例插入了错误的数字,并且计算错误。例如:
(4 * (4-1) + 12 * (7-1))/(17 * 4 + 12 * 10) = 844/0.88 = 0.44
这让我困惑了好几个小时。:(
其他回答
许多答案把所有的计算都打包成一个函数。如果您需要计算直线斜率、y轴截距或x轴截距,以便在代码的其他地方使用,那么这些计算将是冗余的。我分离出了各自的函数,使用了明显的变量名,并注释了我的代码以使其更易于理解。我需要知道直线是否无限超出它们的端点,所以在JavaScript中:
http://jsfiddle.net/skibulk/evmqq00u/
var point_a = {x:0, y:10},
point_b = {x:12, y:12},
point_c = {x:10, y:0},
point_d = {x:0, y:0},
slope_ab = slope(point_a, point_b),
slope_bc = slope(point_b, point_c),
slope_cd = slope(point_c, point_d),
slope_da = slope(point_d, point_a),
yint_ab = y_intercept(point_a, slope_ab),
yint_bc = y_intercept(point_b, slope_bc),
yint_cd = y_intercept(point_c, slope_cd),
yint_da = y_intercept(point_d, slope_da),
xint_ab = x_intercept(point_a, slope_ab, yint_ab),
xint_bc = x_intercept(point_b, slope_bc, yint_bc),
xint_cd = x_intercept(point_c, slope_cd, yint_cd),
xint_da = x_intercept(point_d, slope_da, yint_da),
point_aa = intersect(slope_da, yint_da, xint_da, slope_ab, yint_ab, xint_ab),
point_bb = intersect(slope_ab, yint_ab, xint_ab, slope_bc, yint_bc, xint_bc),
point_cc = intersect(slope_bc, yint_bc, xint_bc, slope_cd, yint_cd, xint_cd),
point_dd = intersect(slope_cd, yint_cd, xint_cd, slope_da, yint_da, xint_da);
console.log(point_a, point_b, point_c, point_d);
console.log(slope_ab, slope_bc, slope_cd, slope_da);
console.log(yint_ab, yint_bc, yint_cd, yint_da);
console.log(xint_ab, xint_bc, xint_cd, xint_da);
console.log(point_aa, point_bb, point_cc, point_dd);
function slope(point_a, point_b) {
var i = (point_b.y - point_a.y) / (point_b.x - point_a.x);
if (i === -Infinity) return Infinity;
if (i === -0) return 0;
return i;
}
function y_intercept(point, slope) {
// Horizontal Line
if (slope == 0) return point.y;
// Vertical Line
if (slope == Infinity)
{
// THE Y-Axis
if (point.x == 0) return Infinity;
// No Intercept
return null;
}
// Angled Line
return point.y - (slope * point.x);
}
function x_intercept(point, slope, yint) {
// Vertical Line
if (slope == Infinity) return point.x;
// Horizontal Line
if (slope == 0)
{
// THE X-Axis
if (point.y == 0) return Infinity;
// No Intercept
return null;
}
// Angled Line
return -yint / slope;
}
// Intersection of two infinite lines
function intersect(slope_a, yint_a, xint_a, slope_b, yint_b, xint_b) {
if (slope_a == slope_b)
{
// Equal Lines
if (yint_a == yint_b && xint_a == xint_b) return Infinity;
// Parallel Lines
return null;
}
// First Line Vertical
if (slope_a == Infinity)
{
return {
x: xint_a,
y: (slope_b * xint_a) + yint_b
};
}
// Second Line Vertical
if (slope_b == Infinity)
{
return {
x: xint_b,
y: (slope_a * xint_b) + yint_a
};
}
// Not Equal, Not Parallel, Not Vertical
var i = (yint_b - yint_a) / (slope_a - slope_b);
return {
x: i,
y: (slope_a * i) + yint_a
};
}
这个解决方案可能会有所帮助
public static float GetLineYIntesept(PointF p, float slope)
{
return p.Y - slope * p.X;
}
public static PointF FindIntersection(PointF line1Start, PointF line1End, PointF line2Start, PointF line2End)
{
float slope1 = (line1End.Y - line1Start.Y) / (line1End.X - line1Start.X);
float slope2 = (line2End.Y - line2Start.Y) / (line2End.X - line2Start.X);
float yinter1 = GetLineYIntesept(line1Start, slope1);
float yinter2 = GetLineYIntesept(line2Start, slope2);
if (slope1 == slope2 && yinter1 != yinter2)
return PointF.Empty;
float x = (yinter2 - yinter1) / (slope1 - slope2);
float y = slope1 * x + yinter1;
return new PointF(x, y);
}
上面有很多解决方案,但我认为下面的解决方案很简单,很容易理解。
矢量AB和矢量CD相交当且仅当
端点a和b在线段CD的两边。 端点c和d在线段AB的对边。
更具体地说,a和b在线段CD的对面当且仅当两个三元组中有一个是逆时针顺序的。
Intersect(a, b, c, d)
if CCW(a, c, d) == CCW(b, c, d)
return false;
else if CCW(a, b, c) == CCW(a, b, d)
return false;
else
return true;
这里的CCW代表逆时针,根据点的方向返回真/假。
来源:http://compgeom.cs.uiuc.edu/~jeffe/teaching/373/notes/x06-sweepline.pdf 第二页
我从《多视图几何》这本书里读到了这些算法
以下文本使用
'作为转置符号
*作为点积
当用作算子时,X作为叉乘
1. 线的定义
点x_vec = (x, y)'在直线ax + by + c = 0上
标记L = (a, b, c)',点为(x, y, 1)'为齐次坐标
直线方程可以写成
(x, y, 1)(a, b, c)' = 0或x' * L = 0
2. 直线交点
我们有两条直线L1=(a1, b1, c1)', L2=(a2, b2, c2)'
假设x是一个点,一个向量,x = L1 x L2 (L1叉乘L2)。
注意,x始终是一个二维点,如果你对(L1xL2)是一个三元素向量,x是一个二维坐标感到困惑,请阅读齐次坐标。
根据三重积,我们知道
L1 * (L1 x L2) = 0, L2 * (L1 x L2) = 0,因为L1,L2共平面
我们用向量x代替L1*x,那么L1*x=0, L2*x=0,这意味着x在L1和L2上,x是交点。
注意,这里x是齐次坐标,如果x的最后一个元素是零,这意味着L1和L2是平行的。
我将Kris的答案移植到JavaScript。在尝试了许多不同的答案后,他给出了正确的观点。我以为我要疯了,因为我没有得到我需要的分数。
function getLineLineCollision(p0, p1, p2, p3) {
var s1, s2;
s1 = {x: p1.x - p0.x, y: p1.y - p0.y};
s2 = {x: p3.x - p2.x, y: p3.y - p2.y};
var s10_x = p1.x - p0.x;
var s10_y = p1.y - p0.y;
var s32_x = p3.x - p2.x;
var s32_y = p3.y - p2.y;
var denom = s10_x * s32_y - s32_x * s10_y;
if(denom == 0) {
return false;
}
var denom_positive = denom > 0;
var s02_x = p0.x - p2.x;
var s02_y = p0.y - p2.y;
var s_numer = s10_x * s02_y - s10_y * s02_x;
if((s_numer < 0) == denom_positive) {
return false;
}
var t_numer = s32_x * s02_y - s32_y * s02_x;
if((t_numer < 0) == denom_positive) {
return false;
}
if((s_numer > denom) == denom_positive || (t_numer > denom) == denom_positive) {
return false;
}
var t = t_numer / denom;
var p = {x: p0.x + (t * s10_x), y: p0.y + (t * s10_y)};
return p;
}