我如何确定两条直线是否相交,如果相交,在x,y点处?


当前回答

有一个很好的方法来解决这个问题就是用向量叉乘。定义二维向量叉乘v × w为vx wy−vy wx。

假设这两条线段从p到p + r,从q到q + s。那么第一行上的任意点都可以表示为p + t r(对于标量参数t),第二行上的任意点可以表示为q + u s(对于标量参数u)。

如果t和u满足以下条件,两条直线相交:

P + t r = q + u s

两边叉乘s,得到

(p + r) × s = (q + u s) × s

由于s × s = 0,这意味着

T (r × s) = (q−p) × s

因此,求解t:

T = (q−p) × s / (r × s)

同样地,我们可以解出u:

(p + r) × r = (q + u s) × r U (s × r) = (p−q) × r U = (p−q) × r / (s × r)

为了减少计算步骤,可以方便地将其重写为以下形式(记住s × r =−r × s):

U = q−p × r / (r × s)

现在有四种情况:

If r × s = 0 and (q − p) × r = 0, then the two lines are collinear. In this case, express the endpoints of the second segment (q and q + s) in terms of the equation of the first line segment (p + t r): t0 = (q − p) · r / (r · r) t1 = (q + s − p) · r / (r · r) = t0 + s · r / (r · r) If the interval between t0 and t1 intersects the interval [0, 1] then the line segments are collinear and overlapping; otherwise they are collinear and disjoint. Note that if s and r point in opposite directions, then s · r < 0 and so the interval to be checked is [t1, t0] rather than [t0, t1]. If r × s = 0 and (q − p) × r ≠ 0, then the two lines are parallel and non-intersecting. If r × s ≠ 0 and 0 ≤ t ≤ 1 and 0 ≤ u ≤ 1, the two line segments meet at the point p + t r = q + u s. Otherwise, the two line segments are not parallel but do not intersect.

来源:该方法是3D线相交算法的2维专门化,来自Ronald Goldman发表在Graphics Gems,第304页的文章“三条线在三维空间中的相交”。在三维空间中,通常的情况是直线是倾斜的(既不平行也不相交),在这种情况下,该方法给出了两条直线最接近的点。

其他回答

许多答案把所有的计算都打包成一个函数。如果您需要计算直线斜率、y轴截距或x轴截距,以便在代码的其他地方使用,那么这些计算将是冗余的。我分离出了各自的函数,使用了明显的变量名,并注释了我的代码以使其更易于理解。我需要知道直线是否无限超出它们的端点,所以在JavaScript中:

http://jsfiddle.net/skibulk/evmqq00u/

var point_a = {x:0, y:10},
    point_b = {x:12, y:12},
    point_c = {x:10, y:0},
    point_d = {x:0, y:0},
    slope_ab = slope(point_a, point_b),
    slope_bc = slope(point_b, point_c),
    slope_cd = slope(point_c, point_d),
    slope_da = slope(point_d, point_a),
    yint_ab = y_intercept(point_a, slope_ab),
    yint_bc = y_intercept(point_b, slope_bc),
    yint_cd = y_intercept(point_c, slope_cd),
    yint_da = y_intercept(point_d, slope_da),
    xint_ab = x_intercept(point_a, slope_ab, yint_ab),
    xint_bc = x_intercept(point_b, slope_bc, yint_bc),
    xint_cd = x_intercept(point_c, slope_cd, yint_cd),
    xint_da = x_intercept(point_d, slope_da, yint_da),
    point_aa = intersect(slope_da, yint_da, xint_da, slope_ab, yint_ab, xint_ab),
    point_bb = intersect(slope_ab, yint_ab, xint_ab, slope_bc, yint_bc, xint_bc),
    point_cc = intersect(slope_bc, yint_bc, xint_bc, slope_cd, yint_cd, xint_cd),
    point_dd = intersect(slope_cd, yint_cd, xint_cd, slope_da, yint_da, xint_da);

console.log(point_a, point_b, point_c, point_d);
console.log(slope_ab, slope_bc, slope_cd, slope_da);
console.log(yint_ab, yint_bc, yint_cd, yint_da);
console.log(xint_ab, xint_bc, xint_cd, xint_da);
console.log(point_aa, point_bb, point_cc, point_dd);

function slope(point_a, point_b) {
  var i = (point_b.y - point_a.y) / (point_b.x - point_a.x);
  if (i === -Infinity) return Infinity;
  if (i === -0) return 0;
  return i;
}

function y_intercept(point, slope) {
    // Horizontal Line
    if (slope == 0) return point.y;
  // Vertical Line
    if (slope == Infinity)
  {
    // THE Y-Axis
    if (point.x == 0) return Infinity;
    // No Intercept
    return null;
  }
  // Angled Line
  return point.y - (slope * point.x);
}

function x_intercept(point, slope, yint) {
    // Vertical Line
    if (slope == Infinity) return point.x;
  // Horizontal Line
    if (slope == 0)
  {
    // THE X-Axis
    if (point.y == 0) return Infinity;
    // No Intercept
    return null;
  }
  // Angled Line
  return -yint / slope;
}

// Intersection of two infinite lines
function intersect(slope_a, yint_a, xint_a, slope_b, yint_b, xint_b) {
  if (slope_a == slope_b)
  {
    // Equal Lines
    if (yint_a == yint_b && xint_a == xint_b) return Infinity;
    // Parallel Lines
    return null;
  }
  // First Line Vertical
    if (slope_a == Infinity)
  {
    return {
        x: xint_a,
      y: (slope_b * xint_a) + yint_b
    };
  }
  // Second Line Vertical
    if (slope_b == Infinity)
  {
    return {
        x: xint_b,
      y: (slope_a * xint_b) + yint_a
    };
  }
  // Not Equal, Not Parallel, Not Vertical
  var i = (yint_b - yint_a) / (slope_a - slope_b);
  return {
    x: i,
    y: (slope_a * i) + yint_a
  };
}

有一个很好的方法来解决这个问题就是用向量叉乘。定义二维向量叉乘v × w为vx wy−vy wx。

假设这两条线段从p到p + r,从q到q + s。那么第一行上的任意点都可以表示为p + t r(对于标量参数t),第二行上的任意点可以表示为q + u s(对于标量参数u)。

如果t和u满足以下条件,两条直线相交:

P + t r = q + u s

两边叉乘s,得到

(p + r) × s = (q + u s) × s

由于s × s = 0,这意味着

T (r × s) = (q−p) × s

因此,求解t:

T = (q−p) × s / (r × s)

同样地,我们可以解出u:

(p + r) × r = (q + u s) × r U (s × r) = (p−q) × r U = (p−q) × r / (s × r)

为了减少计算步骤,可以方便地将其重写为以下形式(记住s × r =−r × s):

U = q−p × r / (r × s)

现在有四种情况:

If r × s = 0 and (q − p) × r = 0, then the two lines are collinear. In this case, express the endpoints of the second segment (q and q + s) in terms of the equation of the first line segment (p + t r): t0 = (q − p) · r / (r · r) t1 = (q + s − p) · r / (r · r) = t0 + s · r / (r · r) If the interval between t0 and t1 intersects the interval [0, 1] then the line segments are collinear and overlapping; otherwise they are collinear and disjoint. Note that if s and r point in opposite directions, then s · r < 0 and so the interval to be checked is [t1, t0] rather than [t0, t1]. If r × s = 0 and (q − p) × r ≠ 0, then the two lines are parallel and non-intersecting. If r × s ≠ 0 and 0 ≤ t ≤ 1 and 0 ≤ u ≤ 1, the two line segments meet at the point p + t r = q + u s. Otherwise, the two line segments are not parallel but do not intersect.

来源:该方法是3D线相交算法的2维专门化,来自Ronald Goldman发表在Graphics Gems,第304页的文章“三条线在三维空间中的相交”。在三维空间中,通常的情况是直线是倾斜的(既不平行也不相交),在这种情况下,该方法给出了两条直线最接近的点。

如果矩形的每条边都是一条线段,并且用户绘制的部分也是一条线段,那么您只需检查用户绘制的线段是否与四条边线段相交。这应该是一个相当简单的练习,给定每个段的起点和终点。

我认为这个问题有一个更简单的解决方案。今天我想到了另一个想法,看起来效果不错(至少在2D中)。你所要做的就是计算两条直线的交点,然后检查计算的交点是否在两条线段的边界框内。如果是,两条线段相交。就是这样。

编辑:

这就是我如何计算交集(我不知道我在哪里找到了这个代码片段)

Point3D

来自

System.Windows.Media.Media3D

public static Point3D? Intersection(Point3D start1, Point3D end1, Point3D start2, Point3D end2) {

        double a1 = end1.Y - start1.Y;
        double b1 = start1.X - end1.X;
        double c1 = a1 * start1.X + b1 * start1.Y;

        double a2 = end2.Y - start2.Y;
        double b2 = start2.X - end2.X;
        double c2 = a2 * start2.X + b2 * start2.Y;

        double det = a1 * b2 - a2 * b1;
        if (det == 0) { // lines are parallel
            return null;
        }

        double x = (b2 * c1 - b1 * c2) / det;
        double y = (a1 * c2 - a2 * c1) / det;

        return new Point3D(x, y, 0.0);
    }

这是我的BoundingBox类(为了回答的目的而简化):

public class BoundingBox {
    private Point3D min = new Point3D();
    private Point3D max = new Point3D();

    public BoundingBox(Point3D point) {
        min = point;
        max = point;
    }

    public Point3D Min {
        get { return min; }
        set { min = value; }
    }

    public Point3D Max {
        get { return max; }
        set { max = value; }
    }

    public bool Contains(BoundingBox box) {
        bool contains =
            min.X <= box.min.X && max.X >= box.max.X &&
            min.Y <= box.min.Y && max.Y >= box.max.Y &&
            min.Z <= box.min.Z && max.Z >= box.max.Z;
        return contains;
    }

    public bool Contains(Point3D point) {
        return Contains(new BoundingBox(point));
    }

}

以下是对加文回答的改进。马普的解决方案也类似,但都没有推迟分割。

这实际上也是Gareth Rees的答案的一个实际应用,因为向量积在2D中的等价是补点积,这段代码用了其中的三个。切换到3D并使用叉积,在最后插入s和t,结果是3D中直线之间的两个最近点。 不管怎样,2D解:

int get_line_intersection(float p0_x, float p0_y, float p1_x, float p1_y, 
    float p2_x, float p2_y, float p3_x, float p3_y, float *i_x, float *i_y)
{
    float s02_x, s02_y, s10_x, s10_y, s32_x, s32_y, s_numer, t_numer, denom, t;
    s10_x = p1_x - p0_x;
    s10_y = p1_y - p0_y;
    s32_x = p3_x - p2_x;
    s32_y = p3_y - p2_y;

    denom = s10_x * s32_y - s32_x * s10_y;
    if (denom == 0)
        return 0; // Collinear
    bool denomPositive = denom > 0;

    s02_x = p0_x - p2_x;
    s02_y = p0_y - p2_y;
    s_numer = s10_x * s02_y - s10_y * s02_x;
    if ((s_numer < 0) == denomPositive)
        return 0; // No collision

    t_numer = s32_x * s02_y - s32_y * s02_x;
    if ((t_numer < 0) == denomPositive)
        return 0; // No collision

    if (((s_numer > denom) == denomPositive) || ((t_numer > denom) == denomPositive))
        return 0; // No collision
    // Collision detected
    t = t_numer / denom;
    if (i_x != NULL)
        *i_x = p0_x + (t * s10_x);
    if (i_y != NULL)
        *i_y = p0_y + (t * s10_y);

    return 1;
}

基本上,它将除法延迟到最后一刻,并将大多数测试移动到某些计算完成之前,从而增加了早期退出。最后,它还避免了直线平行时的除零情况。

您可能还想考虑使用ε检验,而不是与零比较。非常接近平行的线会产生稍微偏离的结果。这不是一个bug,这是浮点数学的一个限制。