我如何确定两条直线是否相交,如果相交,在x,y点处?


当前回答

基于@Gareth Rees的回答,Python版本:

import numpy as np

def np_perp( a ) :
    b = np.empty_like(a)
    b[0] = a[1]
    b[1] = -a[0]
    return b

def np_cross_product(a, b):
    return np.dot(a, np_perp(b))

def np_seg_intersect(a, b, considerCollinearOverlapAsIntersect = False):
    # https://stackoverflow.com/questions/563198/how-do-you-detect-where-two-line-segments-intersect/565282#565282
    # http://www.codeproject.com/Tips/862988/Find-the-intersection-point-of-two-line-segments
    r = a[1] - a[0]
    s = b[1] - b[0]
    v = b[0] - a[0]
    num = np_cross_product(v, r)
    denom = np_cross_product(r, s)
    # If r x s = 0 and (q - p) x r = 0, then the two lines are collinear.
    if np.isclose(denom, 0) and np.isclose(num, 0):
        # 1. If either  0 <= (q - p) * r <= r * r or 0 <= (p - q) * s <= * s
        # then the two lines are overlapping,
        if(considerCollinearOverlapAsIntersect):
            vDotR = np.dot(v, r)
            aDotS = np.dot(-v, s)
            if (0 <= vDotR  and vDotR <= np.dot(r,r)) or (0 <= aDotS  and aDotS <= np.dot(s,s)):
                return True
        # 2. If neither 0 <= (q - p) * r = r * r nor 0 <= (p - q) * s <= s * s
        # then the two lines are collinear but disjoint.
        # No need to implement this expression, as it follows from the expression above.
        return None
    if np.isclose(denom, 0) and not np.isclose(num, 0):
        # Parallel and non intersecting
        return None
    u = num / denom
    t = np_cross_product(v, s) / denom
    if u >= 0 and u <= 1 and t >= 0 and t <= 1:
        res = b[0] + (s*u)
        return res
    # Otherwise, the two line segments are not parallel but do not intersect.
    return None

其他回答

iMalc回答的Python版本:

def find_intersection( p0, p1, p2, p3 ) :

    s10_x = p1[0] - p0[0]
    s10_y = p1[1] - p0[1]
    s32_x = p3[0] - p2[0]
    s32_y = p3[1] - p2[1]

    denom = s10_x * s32_y - s32_x * s10_y

    if denom == 0 : return None # collinear

    denom_is_positive = denom > 0

    s02_x = p0[0] - p2[0]
    s02_y = p0[1] - p2[1]

    s_numer = s10_x * s02_y - s10_y * s02_x

    if (s_numer < 0) == denom_is_positive : return None # no collision

    t_numer = s32_x * s02_y - s32_y * s02_x

    if (t_numer < 0) == denom_is_positive : return None # no collision

    if (s_numer > denom) == denom_is_positive or (t_numer > denom) == denom_is_positive : return None # no collision


    # collision detected

    t = t_numer / denom

    intersection_point = [ p0[0] + (t * s10_x), p0[1] + (t * s10_y) ]


    return intersection_point

我试过其中一些答案,但它们对我不起作用(对不起伙计们);在网上搜索之后,我找到了这个。

对他的代码做了一点修改,我现在有了这个函数,它将返回交点,如果没有找到交点,它将返回- 1,1。

    Public Function intercetion(ByVal ax As Integer, ByVal ay As Integer, ByVal bx As Integer, ByVal by As Integer, ByVal cx As Integer, ByVal cy As Integer, ByVal dx As Integer, ByVal dy As Integer) As Point
    '//  Determines the intersection point of the line segment defined by points A and B
    '//  with the line segment defined by points C and D.
    '//
    '//  Returns YES if the intersection point was found, and stores that point in X,Y.
    '//  Returns NO if there is no determinable intersection point, in which case X,Y will
    '//  be unmodified.

    Dim distAB, theCos, theSin, newX, ABpos As Double

    '//  Fail if either line segment is zero-length.
    If ax = bx And ay = by Or cx = dx And cy = dy Then Return New Point(-1, -1)

    '//  Fail if the segments share an end-point.
    If ax = cx And ay = cy Or bx = cx And by = cy Or ax = dx And ay = dy Or bx = dx And by = dy Then Return New Point(-1, -1)

    '//  (1) Translate the system so that point A is on the origin.
    bx -= ax
    by -= ay
    cx -= ax
    cy -= ay
    dx -= ax
    dy -= ay

    '//  Discover the length of segment A-B.
    distAB = Math.Sqrt(bx * bx + by * by)

    '//  (2) Rotate the system so that point B is on the positive X axis.
    theCos = bx / distAB
    theSin = by / distAB
    newX = cx * theCos + cy * theSin
    cy = cy * theCos - cx * theSin
    cx = newX
    newX = dx * theCos + dy * theSin
    dy = dy * theCos - dx * theSin
    dx = newX

    '//  Fail if segment C-D doesn't cross line A-B.
    If cy < 0 And dy < 0 Or cy >= 0 And dy >= 0 Then Return New Point(-1, -1)

    '//  (3) Discover the position of the intersection point along line A-B.
    ABpos = dx + (cx - dx) * dy / (dy - cy)

    '//  Fail if segment C-D crosses line A-B outside of segment A-B.
    If ABpos < 0 Or ABpos > distAB Then Return New Point(-1, -1)

    '//  (4) Apply the discovered position to line A-B in the original coordinate system.
    '*X=Ax+ABpos*theCos
    '*Y=Ay+ABpos*theSin

    '//  Success.
    Return New Point(ax + ABpos * theCos, ay + ABpos * theSin)
End Function

只是想提一下,一个很好的解释和明确的解决方案可以在数字食谱系列中找到。我有这本书的第三版,答案在1117页21.4节。另一种不同命名的解决方案可以在玛丽娜·加夫里洛娃(Marina Gavrilova)的论文中找到。在我看来,她的解决办法要简单一些。

我的实现如下:

bool NuGeometry::IsBetween(const double& x0, const double& x, const double& x1){
   return (x >= x0) && (x <= x1);
}

bool NuGeometry::FindIntersection(const double& x0, const double& y0, 
     const double& x1, const double& y1,
     const double& a0, const double& b0, 
     const double& a1, const double& b1, 
     double& xy, double& ab) {
   // four endpoints are x0, y0 & x1,y1 & a0,b0 & a1,b1
   // returned values xy and ab are the fractional distance along xy and ab
   // and are only defined when the result is true

   bool partial = false;
   double denom = (b0 - b1) * (x0 - x1) - (y0 - y1) * (a0 - a1);
   if (denom == 0) {
      xy = -1;
      ab = -1;
   } else {
      xy = (a0 * (y1 - b1) + a1 * (b0 - y1) + x1 * (b1 - b0)) / denom;
      partial = NuGeometry::IsBetween(0, xy, 1);
      if (partial) {
         // no point calculating this unless xy is between 0 & 1
         ab = (y1 * (x0 - a1) + b1 * (x1 - x0) + y0 * (a1 - x1)) / denom; 
      }
   }
   if ( partial && NuGeometry::IsBetween(0, ab, 1)) {
      ab = 1-ab;
      xy = 1-xy;
      return true;
   }  else return false;
}

我已经尝试实现上述Jason所描述的算法;不幸的是,虽然在调试数学工作,我发现许多情况下,它不起作用。

例如,考虑点A(10,10) B(20,20) C(10,1) D(1,10) h=。5然而,通过检查可以清楚地看到,这些部分彼此一点也不接近。

将其绘制成图可以清楚地看出,0 < h < 1条件仅表明如果存在截距点,则截距点将位于CD上,而不告诉我们该点是否位于AB上。 为了确保有一个交叉点,你必须对变量g进行对称计算,拦截的要求是: 0 < g < 1 AND 0 < h < 1

人们似乎对Gavin的答案很感兴趣,cortijon在评论中提出了一个javascript版本,iMalc提供了一个计算量略少的版本。一些人指出了各种代码建议的缺点,另一些人则评论了一些代码建议的效率。

iMalc通过Gavin的答案提供的算法是我目前在一个javascript项目中使用的算法,我只是想在这里提供一个清理过的版本,如果它可以帮助到任何人的话。

// Some variables for reuse, others may do this differently
var p0x, p1x, p2x, p3x, ix,
    p0y, p1y, p2y, p3y, iy,
    collisionDetected;

// do stuff, call other functions, set endpoints...

// note: for my purpose I use |t| < |d| as opposed to
// |t| <= |d| which is equivalent to 0 <= t < 1 rather than
// 0 <= t <= 1 as in Gavin's answer - results may vary

var lineSegmentIntersection = function(){
    var d, dx1, dx2, dx3, dy1, dy2, dy3, s, t;

    dx1 = p1x - p0x;      dy1 = p1y - p0y;
    dx2 = p3x - p2x;      dy2 = p3y - p2y;
    dx3 = p0x - p2x;      dy3 = p0y - p2y;

    collisionDetected = 0;

    d = dx1 * dy2 - dx2 * dy1;

    if(d !== 0){
        s = dx1 * dy3 - dx3 * dy1;
        if((s <= 0 && d < 0 && s >= d) || (s >= 0 && d > 0 && s <= d)){
            t = dx2 * dy3 - dx3 * dy2;
            if((t <= 0 && d < 0 && t > d) || (t >= 0 && d > 0 && t < d)){
                t = t / d;
                collisionDetected = 1;
                ix = p0x + t * dx1;
                iy = p0y + t * dy1;
            }
        }
    }
};