我如何确定两条直线是否相交,如果相交,在x,y点处?
当前回答
基于@Gareth Rees的回答,Python版本:
import numpy as np
def np_perp( a ) :
b = np.empty_like(a)
b[0] = a[1]
b[1] = -a[0]
return b
def np_cross_product(a, b):
return np.dot(a, np_perp(b))
def np_seg_intersect(a, b, considerCollinearOverlapAsIntersect = False):
# https://stackoverflow.com/questions/563198/how-do-you-detect-where-two-line-segments-intersect/565282#565282
# http://www.codeproject.com/Tips/862988/Find-the-intersection-point-of-two-line-segments
r = a[1] - a[0]
s = b[1] - b[0]
v = b[0] - a[0]
num = np_cross_product(v, r)
denom = np_cross_product(r, s)
# If r x s = 0 and (q - p) x r = 0, then the two lines are collinear.
if np.isclose(denom, 0) and np.isclose(num, 0):
# 1. If either 0 <= (q - p) * r <= r * r or 0 <= (p - q) * s <= * s
# then the two lines are overlapping,
if(considerCollinearOverlapAsIntersect):
vDotR = np.dot(v, r)
aDotS = np.dot(-v, s)
if (0 <= vDotR and vDotR <= np.dot(r,r)) or (0 <= aDotS and aDotS <= np.dot(s,s)):
return True
# 2. If neither 0 <= (q - p) * r = r * r nor 0 <= (p - q) * s <= s * s
# then the two lines are collinear but disjoint.
# No need to implement this expression, as it follows from the expression above.
return None
if np.isclose(denom, 0) and not np.isclose(num, 0):
# Parallel and non intersecting
return None
u = num / denom
t = np_cross_product(v, s) / denom
if u >= 0 and u <= 1 and t >= 0 and t <= 1:
res = b[0] + (s*u)
return res
# Otherwise, the two line segments are not parallel but do not intersect.
return None
其他回答
我已经尝试实现上述Jason所描述的算法;不幸的是,虽然在调试数学工作,我发现许多情况下,它不起作用。
例如,考虑点A(10,10) B(20,20) C(10,1) D(1,10) h=。5然而,通过检查可以清楚地看到,这些部分彼此一点也不接近。
将其绘制成图可以清楚地看出,0 < h < 1条件仅表明如果存在截距点,则截距点将位于CD上,而不告诉我们该点是否位于AB上。 为了确保有一个交叉点,你必须对变量g进行对称计算,拦截的要求是: 0 < g < 1 AND 0 < h < 1
如果矩形的每条边都是一条线段,并且用户绘制的部分也是一条线段,那么您只需检查用户绘制的线段是否与四条边线段相交。这应该是一个相当简单的练习,给定每个段的起点和终点。
上面有很多解决方案,但我认为下面的解决方案很简单,很容易理解。
矢量AB和矢量CD相交当且仅当
端点a和b在线段CD的两边。 端点c和d在线段AB的对边。
更具体地说,a和b在线段CD的对面当且仅当两个三元组中有一个是逆时针顺序的。
Intersect(a, b, c, d)
if CCW(a, c, d) == CCW(b, c, d)
return false;
else if CCW(a, b, c) == CCW(a, b, d)
return false;
else
return true;
这里的CCW代表逆时针,根据点的方向返回真/假。
来源:http://compgeom.cs.uiuc.edu/~jeffe/teaching/373/notes/x06-sweepline.pdf 第二页
问题C:如何检测两条线段是否相交?
我也搜索过同样的话题,但我对答案并不满意。所以我写了一篇文章,非常详细地解释了如何检查两条线段是否与大量图像相交。这是完整的(并经过测试的)java代码。
以下是这篇文章,截取了最重要的部分:
检查线段a是否与线段b相交的算法如下所示:
什么是边界框?下面是两个线段的边界框:
如果两个边界框都有交点,则移动线段a,使其中一点在(0|0)处。现在你有了一条经过a定义的原点的直线,现在以同样的方式移动线段b,检查线段b的新点是否在直线a的不同两侧。如果是这样,则反过来检查。如果也是这样,线段相交。如果不相交,它们就不相交。
问题A:两条线段在哪里相交?
你知道两条线段a和b相交。如果你不知道,用我在C题中给你的工具检查一下。
现在你可以通过一些情况,并得到解决与七年级数学(见代码和交互示例)。
问题B:你如何检测两条线是否相交?
假设点A = (x1, y1)点B = (x2, y2) C = (x_3, y_3) D = (x_4, y_4) 第一行由AB定义(A != B),第二行由CD定义(C != D)。
function doLinesIntersect(AB, CD) {
if (x1 == x2) {
return !(x3 == x4 && x1 != x3);
} else if (x3 == x4) {
return true;
} else {
// Both lines are not parallel to the y-axis
m1 = (y1-y2)/(x1-x2);
m2 = (y3-y4)/(x3-x4);
return m1 != m2;
}
}
问题D:两条直线在哪里相交?
检查问题B,它们是否相交。
直线a和b由每条直线上的两个点定义。 你基本上可以用和问题A相同的逻辑。
根据t3chb0t的答案:
int intersezione_linee(int x1, int y1, int x2, int y2, int x3, int y3, int x4, int y4, int& p_x, int& p_y)
{
//L1: estremi (x1,y1)(x2,y2) L2: estremi (x3,y3)(x3,y3)
int d;
d = (x1-x2)*(y3-y4) - (y1-y2)*(x3-x4);
if(!d)
return 0;
p_x = ((x1*y2-y1*x2)*(x3-x4) - (x1-x2)*(x3*y4-y3*x4))/d;
p_y = ((x1*y2-y1*x2)*(y3-y4) - (y1-y2)*(x3*y4-y3*x4))/d;
return 1;
}
int in_bounding_box(int x1, int y1, int x2, int y2, int p_x, int p_y)
{
return p_x>=x1 && p_x<=x2 && p_y>=y1 && p_y<=y2;
}
int intersezione_segmenti(int x1, int y1, int x2, int y2, int x3, int y3, int x4, int y4, int& p_x, int& p_y)
{
if (!intersezione_linee(x1,y1,x2,y2,x3,y3,x4,y4,p_x,p_y))
return 0;
return in_bounding_box(x1,y1,x2,y2,p_x,p_y) && in_bounding_box(x3,y3,x4,y4,p_x,p_y);
}