我如何确定两条直线是否相交,如果相交,在x,y点处?


当前回答

基于@Gareth Rees的回答,Python版本:

import numpy as np

def np_perp( a ) :
    b = np.empty_like(a)
    b[0] = a[1]
    b[1] = -a[0]
    return b

def np_cross_product(a, b):
    return np.dot(a, np_perp(b))

def np_seg_intersect(a, b, considerCollinearOverlapAsIntersect = False):
    # https://stackoverflow.com/questions/563198/how-do-you-detect-where-two-line-segments-intersect/565282#565282
    # http://www.codeproject.com/Tips/862988/Find-the-intersection-point-of-two-line-segments
    r = a[1] - a[0]
    s = b[1] - b[0]
    v = b[0] - a[0]
    num = np_cross_product(v, r)
    denom = np_cross_product(r, s)
    # If r x s = 0 and (q - p) x r = 0, then the two lines are collinear.
    if np.isclose(denom, 0) and np.isclose(num, 0):
        # 1. If either  0 <= (q - p) * r <= r * r or 0 <= (p - q) * s <= * s
        # then the two lines are overlapping,
        if(considerCollinearOverlapAsIntersect):
            vDotR = np.dot(v, r)
            aDotS = np.dot(-v, s)
            if (0 <= vDotR  and vDotR <= np.dot(r,r)) or (0 <= aDotS  and aDotS <= np.dot(s,s)):
                return True
        # 2. If neither 0 <= (q - p) * r = r * r nor 0 <= (p - q) * s <= s * s
        # then the two lines are collinear but disjoint.
        # No need to implement this expression, as it follows from the expression above.
        return None
    if np.isclose(denom, 0) and not np.isclose(num, 0):
        # Parallel and non intersecting
        return None
    u = num / denom
    t = np_cross_product(v, s) / denom
    if u >= 0 and u <= 1 and t >= 0 and t <= 1:
        res = b[0] + (s*u)
        return res
    # Otherwise, the two line segments are not parallel but do not intersect.
    return None

其他回答

找到两条线段的正确交点是一项具有大量边缘情况的非简单任务。下面是一个用Java编写的、有效的、经过测试的解决方案。

本质上,在求两条线段的交点时,有三种情况会发生:

线段不相交 有一个唯一的交点 交点是另一段

注意:在代码中,我假设x1 = x2和y1 = y2的线段(x1, y1), (x2, y2)是有效的线段。从数学上讲,线段由不同的点组成,但为了完整起见,我在这个实现中允许线段作为点。

代码是从我的github回购

/**
 * This snippet finds the intersection of two line segments.
 * The intersection may either be empty, a single point or the
 * intersection is a subsegment there's an overlap.
 */

import static java.lang.Math.abs;
import static java.lang.Math.max;
import static java.lang.Math.min;

import java.util.ArrayList;
import java.util.List;

public class LineSegmentLineSegmentIntersection {

  // Small epsilon used for double value comparison.
  private static final double EPS = 1e-5;

  // 2D Point class.
  public static class Pt {
    double x, y;
    public Pt(double x, double y) {
      this.x = x; 
      this.y = y;
    }
    public boolean equals(Pt pt) {
      return abs(x - pt.x) < EPS && abs(y - pt.y) < EPS;
    }
  }

  // Finds the orientation of point 'c' relative to the line segment (a, b)
  // Returns  0 if all three points are collinear.
  // Returns -1 if 'c' is clockwise to segment (a, b), i.e right of line formed by the segment.
  // Returns +1 if 'c' is counter clockwise to segment (a, b), i.e left of line
  // formed by the segment.
  public static int orientation(Pt a, Pt b, Pt c) {
    double value = (b.y - a.y) * (c.x - b.x) - 
                   (b.x - a.x) * (c.y - b.y);
    if (abs(value) < EPS) return 0;
    return (value > 0) ? -1 : +1;
  }

  // Tests whether point 'c' is on the line segment (a, b).
  // Ensure first that point c is collinear to segment (a, b) and
  // then check whether c is within the rectangle formed by (a, b)
  public static boolean pointOnLine(Pt a, Pt b, Pt c) {
    return orientation(a, b, c) == 0 && 
           min(a.x, b.x) <= c.x && c.x <= max(a.x, b.x) && 
           min(a.y, b.y) <= c.y && c.y <= max(a.y, b.y);
  }

  // Determines whether two segments intersect.
  public static boolean segmentsIntersect(Pt p1, Pt p2, Pt p3, Pt p4) {

    // Get the orientation of points p3 and p4 in relation
    // to the line segment (p1, p2)
    int o1 = orientation(p1, p2, p3);
    int o2 = orientation(p1, p2, p4);
    int o3 = orientation(p3, p4, p1);
    int o4 = orientation(p3, p4, p2);

    // If the points p1, p2 are on opposite sides of the infinite
    // line formed by (p3, p4) and conversly p3, p4 are on opposite
    // sides of the infinite line formed by (p1, p2) then there is
    // an intersection.
    if (o1 != o2 && o3 != o4) return true;

    // Collinear special cases (perhaps these if checks can be simplified?)
    if (o1 == 0 && pointOnLine(p1, p2, p3)) return true;
    if (o2 == 0 && pointOnLine(p1, p2, p4)) return true;
    if (o3 == 0 && pointOnLine(p3, p4, p1)) return true;
    if (o4 == 0 && pointOnLine(p3, p4, p2)) return true;

    return false;
  }

  public static List<Pt> getCommonEndpoints(Pt p1, Pt p2, Pt p3, Pt p4) {

    List<Pt> points = new ArrayList<>();

    if (p1.equals(p3)) {
      points.add(p1);
      if (p2.equals(p4)) points.add(p2);

    } else if (p1.equals(p4)) {
      points.add(p1);
      if (p2.equals(p3)) points.add(p2);

    } else if (p2.equals(p3)) {
      points.add(p2);
      if (p1.equals(p4)) points.add(p1);

    } else if (p2.equals(p4)) {
      points.add(p2);
      if (p1.equals(p3)) points.add(p1);
    }

    return points;
  }

  // Finds the intersection point(s) of two line segments. Unlike regular line 
  // segments, segments which are points (x1 = x2 and y1 = y2) are allowed.
  public static Pt[] lineSegmentLineSegmentIntersection(Pt p1, Pt p2, Pt p3, Pt p4) {

    // No intersection.
    if (!segmentsIntersect(p1, p2, p3, p4)) return new Pt[]{};

    // Both segments are a single point.
    if (p1.equals(p2) && p2.equals(p3) && p3.equals(p4))
      return new Pt[]{p1};

    List<Pt> endpoints = getCommonEndpoints(p1, p2, p3, p4);
    int n = endpoints.size();

    // One of the line segments is an intersecting single point.
    // NOTE: checking only n == 1 is insufficient to return early
    // because the solution might be a sub segment.
    boolean singleton = p1.equals(p2) || p3.equals(p4);
    if (n == 1 && singleton) return new Pt[]{endpoints.get(0)};

    // Segments are equal.
    if (n == 2) return new Pt[]{endpoints.get(0), endpoints.get(1)};

    boolean collinearSegments = (orientation(p1, p2, p3) == 0) && 
                                (orientation(p1, p2, p4) == 0);

    // The intersection will be a sub-segment of the two
    // segments since they overlap each other.
    if (collinearSegments) {

      // Segment #2 is enclosed in segment #1
      if (pointOnLine(p1, p2, p3) && pointOnLine(p1, p2, p4))
        return new Pt[]{p3, p4};

      // Segment #1 is enclosed in segment #2
      if (pointOnLine(p3, p4, p1) && pointOnLine(p3, p4, p2))
        return new Pt[]{p1, p2};

      // The subsegment is part of segment #1 and part of segment #2.
      // Find the middle points which correspond to this segment.
      Pt midPoint1 = pointOnLine(p1, p2, p3) ? p3 : p4;
      Pt midPoint2 = pointOnLine(p3, p4, p1) ? p1 : p2;

      // There is actually only one middle point!
      if (midPoint1.equals(midPoint2)) return new Pt[]{midPoint1};

      return new Pt[]{midPoint1, midPoint2};
    }

    /* Beyond this point there is a unique intersection point. */

    // Segment #1 is a vertical line.
    if (abs(p1.x - p2.x) < EPS) {
      double m = (p4.y - p3.y) / (p4.x - p3.x);
      double b = p3.y - m * p3.x;
      return new Pt[]{new Pt(p1.x, m * p1.x + b)};
    }

    // Segment #2 is a vertical line.
    if (abs(p3.x - p4.x) < EPS) {
      double m = (p2.y - p1.y) / (p2.x - p1.x);
      double b = p1.y - m * p1.x;
      return new Pt[]{new Pt(p3.x, m * p3.x + b)};
    }

    double m1 = (p2.y - p1.y) / (p2.x - p1.x);
    double m2 = (p4.y - p3.y) / (p4.x - p3.x);
    double b1 = p1.y - m1 * p1.x;
    double b2 = p3.y - m2 * p3.x;
    double x = (b2 - b1) / (m1 - m2);
    double y = (m1 * b2 - m2 * b1) / (m1 - m2);

    return new Pt[]{new Pt(x, y)};
  }

}

下面是一个简单的用法示例:

  public static void main(String[] args) {

    // Segment #1 is (p1, p2), segment #2 is (p3, p4)
    Pt p1, p2, p3, p4;

    p1 = new Pt(-2, 4); p2 = new Pt(3, 3);
    p3 = new Pt(0, 0);  p4 = new Pt(2, 4);
    Pt[] points = lineSegmentLineSegmentIntersection(p1, p2, p3, p4);
    Pt point = points[0];

    // Prints: (1.636, 3.273)
    System.out.printf("(%.3f, %.3f)\n", point.x, point.y);

    p1 = new Pt(-10, 0); p2 = new Pt(+10, 0);
    p3 = new Pt(-5, 0);  p4 = new Pt(+5, 0);
    points = lineSegmentLineSegmentIntersection(p1, p2, p3, p4);
    Pt point1 = points[0], point2 = points[1];

    // Prints: (-5.000, 0.000) (5.000, 0.000)
    System.out.printf("(%.3f, %.3f) (%.3f, %.3f)\n", point1.x, point1.y, point2.x, point2.y);
  }

如果矩形的每条边都是一条线段,并且用户绘制的部分也是一条线段,那么您只需检查用户绘制的线段是否与四条边线段相交。这应该是一个相当简单的练习,给定每个段的起点和终点。

问题可以简化成这样一个问题:从A到B和从C到D的两条直线相交吗?然后你可以问它四次(在直线和矩形的四条边之间)。

这是做这个的矢量数学。假设A到B的直线就是问题中的直线C到D的直线是其中一条矩形直线。我的表示法是Ax是A的x坐标Cy是c的y坐标“*”表示点积,例如A*B = Ax*Bx + Ay*By。

E = B-A = ( Bx-Ax, By-Ay )
F = D-C = ( Dx-Cx, Dy-Cy ) 
P = ( -Ey, Ex )
h = ( (A-C) * P ) / ( F * P )

h是键。如果h在0和1之间,两条线相交,否则不相交。如果F*P为零,当然不能进行计算,但在这种情况下,直线是平行的,因此只有在明显的情况下才相交。

交点是C + F*h。

更多的乐趣:

如果h恰好等于0或1,两条直线的端点相交。你可以认为这是一个“交集”,也可以认为不是。

具体来说,h是直线长度乘以多少才能恰好与另一条直线相交。

因此,如果h<0,这意味着矩形线在给定直线的“后面”(“方向”是“从A到B”),如果h>1,矩形线在给定直线的“前面”。

推导:

A和C是指向直线起点的向量;E和F是由A和C端点组成的直线。

对于平面上任意两条不平行线,必须恰好有一对标量g和h,使得这个方程成立:

A + E*g = C + F*h

为什么?因为两条不平行线必须相交,这意味着你可以将这两条线按一定比例缩放并相互接触。

(起初,这看起来像一个有两个未知数的方程!但当你考虑到这是一个二维矢量方程时,它就不是,这意味着这是一对x和y的方程)

我们必须消去其中一个变量。一个简单的方法是使E项为零。要做到这一点,用一个向量对方程两边做点积这个向量与E点乘到0,我把上面的向量称为P,我做了E的明显变换。

你现在有:

A*P = C*P + F*P*h
(A-C)*P = (F*P)*h
( (A-C)*P ) / (F*P) = h

只是想提一下,一个很好的解释和明确的解决方案可以在数字食谱系列中找到。我有这本书的第三版,答案在1117页21.4节。另一种不同命名的解决方案可以在玛丽娜·加夫里洛娃(Marina Gavrilova)的论文中找到。在我看来,她的解决办法要简单一些。

我的实现如下:

bool NuGeometry::IsBetween(const double& x0, const double& x, const double& x1){
   return (x >= x0) && (x <= x1);
}

bool NuGeometry::FindIntersection(const double& x0, const double& y0, 
     const double& x1, const double& y1,
     const double& a0, const double& b0, 
     const double& a1, const double& b1, 
     double& xy, double& ab) {
   // four endpoints are x0, y0 & x1,y1 & a0,b0 & a1,b1
   // returned values xy and ab are the fractional distance along xy and ab
   // and are only defined when the result is true

   bool partial = false;
   double denom = (b0 - b1) * (x0 - x1) - (y0 - y1) * (a0 - a1);
   if (denom == 0) {
      xy = -1;
      ab = -1;
   } else {
      xy = (a0 * (y1 - b1) + a1 * (b0 - y1) + x1 * (b1 - b0)) / denom;
      partial = NuGeometry::IsBetween(0, xy, 1);
      if (partial) {
         // no point calculating this unless xy is between 0 & 1
         ab = (y1 * (x0 - a1) + b1 * (x1 - x0) + y0 * (a1 - x1)) / denom; 
      }
   }
   if ( partial && NuGeometry::IsBetween(0, ab, 1)) {
      ab = 1-ab;
      xy = 1-xy;
      return true;
   }  else return false;
}

这对我来说很有效。从这里拍的。

 // calculates intersection and checks for parallel lines.  
 // also checks that the intersection point is actually on  
 // the line segment p1-p2  
 Point findIntersection(Point p1,Point p2,  
   Point p3,Point p4) {  
   float xD1,yD1,xD2,yD2,xD3,yD3;  
   float dot,deg,len1,len2;  
   float segmentLen1,segmentLen2;  
   float ua,ub,div;  

   // calculate differences  
   xD1=p2.x-p1.x;  
   xD2=p4.x-p3.x;  
   yD1=p2.y-p1.y;  
   yD2=p4.y-p3.y;  
   xD3=p1.x-p3.x;  
   yD3=p1.y-p3.y;    

   // calculate the lengths of the two lines  
   len1=sqrt(xD1*xD1+yD1*yD1);  
   len2=sqrt(xD2*xD2+yD2*yD2);  

   // calculate angle between the two lines.  
   dot=(xD1*xD2+yD1*yD2); // dot product  
   deg=dot/(len1*len2);  

   // if abs(angle)==1 then the lines are parallell,  
   // so no intersection is possible  
   if(abs(deg)==1) return null;  

   // find intersection Pt between two lines  
   Point pt=new Point(0,0);  
   div=yD2*xD1-xD2*yD1;  
   ua=(xD2*yD3-yD2*xD3)/div;  
   ub=(xD1*yD3-yD1*xD3)/div;  
   pt.x=p1.x+ua*xD1;  
   pt.y=p1.y+ua*yD1;  

   // calculate the combined length of the two segments  
   // between Pt-p1 and Pt-p2  
   xD1=pt.x-p1.x;  
   xD2=pt.x-p2.x;  
   yD1=pt.y-p1.y;  
   yD2=pt.y-p2.y;  
   segmentLen1=sqrt(xD1*xD1+yD1*yD1)+sqrt(xD2*xD2+yD2*yD2);  

   // calculate the combined length of the two segments  
   // between Pt-p3 and Pt-p4  
   xD1=pt.x-p3.x;  
   xD2=pt.x-p4.x;  
   yD1=pt.y-p3.y;  
   yD2=pt.y-p4.y;  
   segmentLen2=sqrt(xD1*xD1+yD1*yD1)+sqrt(xD2*xD2+yD2*yD2);  

   // if the lengths of both sets of segments are the same as  
   // the lenghts of the two lines the point is actually  
   // on the line segment.  

   // if the point isn’t on the line, return null  
   if(abs(len1-segmentLen1)>0.01 || abs(len2-segmentLen2)>0.01)  
     return null;  

   // return the valid intersection  
   return pt;  
 }  

 class Point{  
   float x,y;  
   Point(float x, float y){  
     this.x = x;  
     this.y = y;  
   }  

   void set(float x, float y){  
     this.x = x;  
     this.y = y;  
   }  
 }