我如何确定两条直线是否相交,如果相交,在x,y点处?


当前回答

iMalc回答的Python版本:

def find_intersection( p0, p1, p2, p3 ) :

    s10_x = p1[0] - p0[0]
    s10_y = p1[1] - p0[1]
    s32_x = p3[0] - p2[0]
    s32_y = p3[1] - p2[1]

    denom = s10_x * s32_y - s32_x * s10_y

    if denom == 0 : return None # collinear

    denom_is_positive = denom > 0

    s02_x = p0[0] - p2[0]
    s02_y = p0[1] - p2[1]

    s_numer = s10_x * s02_y - s10_y * s02_x

    if (s_numer < 0) == denom_is_positive : return None # no collision

    t_numer = s32_x * s02_y - s32_y * s02_x

    if (t_numer < 0) == denom_is_positive : return None # no collision

    if (s_numer > denom) == denom_is_positive or (t_numer > denom) == denom_is_positive : return None # no collision


    # collision detected

    t = t_numer / denom

    intersection_point = [ p0[0] + (t * s10_x), p0[1] + (t * s10_y) ]


    return intersection_point

其他回答

这是基于Gareth Ree的回答。它还返回线段重叠的情况。用c++编写的V是一个简单的向量类。其中二维中两个向量的外积返回一个标量。通过了学校自动测试系统的测试。

//Required input point must be colinear with the line
bool on_segment(const V& p, const LineSegment& l)
{
    //If a point is on the line, the sum of the vectors formed by the point to the line endpoints must be equal
    V va = p - l.pa;
    V vb = p - l.pb;
    R ma = va.magnitude();
    R mb = vb.magnitude();
    R ml = (l.pb - l.pa).magnitude();
    R s = ma + mb;
    bool r = s <= ml + epsilon;
    return r;
}

//Compute using vector math
// Returns 0 points if the lines do not intersect or overlap
// Returns 1 point if the lines intersect
//  Returns 2 points if the lines overlap, contain the points where overlapping start starts and stop
std::vector<V> intersect(const LineSegment& la, const LineSegment& lb)
{
    std::vector<V> r;

    //http://stackoverflow.com/questions/563198/how-do-you-detect-where-two-line-segments-intersect
    V oa, ob, da, db; //Origin and direction vectors
    R sa, sb; //Scalar values
    oa = la.pa;
    da = la.pb - la.pa;
    ob = lb.pa;
    db = lb.pb - lb.pa;

    if (da.cross(db) == 0 && (ob - oa).cross(da) == 0) //If colinear
    {
        if (on_segment(lb.pa, la) && on_segment(lb.pb, la))
        {
            r.push_back(lb.pa);
            r.push_back(lb.pb);
            dprintf("colinear, overlapping\n");
            return r;
        }

        if (on_segment(la.pa, lb) && on_segment(la.pb, lb))
        {
            r.push_back(la.pa);
            r.push_back(la.pb);
            dprintf("colinear, overlapping\n");
            return r;
        }

        if (on_segment(la.pa, lb))
            r.push_back(la.pa);

        if (on_segment(la.pb, lb))
            r.push_back(la.pb);

        if (on_segment(lb.pa, la))
            r.push_back(lb.pa);

        if (on_segment(lb.pb, la))
            r.push_back(lb.pb);

        if (r.size() == 0)
            dprintf("colinear, non-overlapping\n");
        else
            dprintf("colinear, overlapping\n");

        return r;
    }

    if (da.cross(db) == 0 && (ob - oa).cross(da) != 0)
    {
        dprintf("parallel non-intersecting\n");
        return r;
    }

    //Math trick db cross db == 0, which is a single scalar in 2D.
    //Crossing both sides with vector db gives:
    sa = (ob - oa).cross(db) / da.cross(db);

    //Crossing both sides with vector da gives
    sb = (oa - ob).cross(da) / db.cross(da);

    if (0 <= sa && sa <= 1 && 0 <= sb && sb <= 1)
    {
        dprintf("intersecting\n");
        r.push_back(oa + da * sa);
        return r;
    }

    dprintf("non-intersecting, non-parallel, non-colinear, non-overlapping\n");
    return r;
}

这个解决方案可能会有所帮助

public static float GetLineYIntesept(PointF p, float slope)
    {
        return p.Y - slope * p.X;
    }

    public static PointF FindIntersection(PointF line1Start, PointF line1End, PointF line2Start, PointF line2End)
    {

        float slope1 = (line1End.Y - line1Start.Y) / (line1End.X - line1Start.X);
        float slope2 = (line2End.Y - line2Start.Y) / (line2End.X - line2Start.X);

        float yinter1 = GetLineYIntesept(line1Start, slope1);
        float yinter2 = GetLineYIntesept(line2Start, slope2);

        if (slope1 == slope2 && yinter1 != yinter2)
            return PointF.Empty;

        float x = (yinter2 - yinter1) / (slope1 - slope2);

        float y = slope1 * x + yinter1;

        return new PointF(x, y);
    }

我从《多视图几何》这本书里读到了这些算法

以下文本使用

'作为转置符号

*作为点积

当用作算子时,X作为叉乘

1. 线的定义

点x_vec = (x, y)'在直线ax + by + c = 0上

标记L = (a, b, c)',点为(x, y, 1)'为齐次坐标

直线方程可以写成

(x, y, 1)(a, b, c)' = 0或x' * L = 0

2. 直线交点

我们有两条直线L1=(a1, b1, c1)', L2=(a2, b2, c2)'

假设x是一个点,一个向量,x = L1 x L2 (L1叉乘L2)。

注意,x始终是一个二维点,如果你对(L1xL2)是一个三元素向量,x是一个二维坐标感到困惑,请阅读齐次坐标。

根据三重积,我们知道

L1 * (L1 x L2) = 0, L2 * (L1 x L2) = 0,因为L1,L2共平面

我们用向量x代替L1*x,那么L1*x=0, L2*x=0,这意味着x在L1和L2上,x是交点。

注意,这里x是齐次坐标,如果x的最后一个元素是零,这意味着L1和L2是平行的。

iMalc回答的Python版本:

def find_intersection( p0, p1, p2, p3 ) :

    s10_x = p1[0] - p0[0]
    s10_y = p1[1] - p0[1]
    s32_x = p3[0] - p2[0]
    s32_y = p3[1] - p2[1]

    denom = s10_x * s32_y - s32_x * s10_y

    if denom == 0 : return None # collinear

    denom_is_positive = denom > 0

    s02_x = p0[0] - p2[0]
    s02_y = p0[1] - p2[1]

    s_numer = s10_x * s02_y - s10_y * s02_x

    if (s_numer < 0) == denom_is_positive : return None # no collision

    t_numer = s32_x * s02_y - s32_y * s02_x

    if (t_numer < 0) == denom_is_positive : return None # no collision

    if (s_numer > denom) == denom_is_positive or (t_numer > denom) == denom_is_positive : return None # no collision


    # collision detected

    t = t_numer / denom

    intersection_point = [ p0[0] + (t * s10_x), p0[1] + (t * s10_y) ]


    return intersection_point

基于@Gareth Rees的回答,Python版本:

import numpy as np

def np_perp( a ) :
    b = np.empty_like(a)
    b[0] = a[1]
    b[1] = -a[0]
    return b

def np_cross_product(a, b):
    return np.dot(a, np_perp(b))

def np_seg_intersect(a, b, considerCollinearOverlapAsIntersect = False):
    # https://stackoverflow.com/questions/563198/how-do-you-detect-where-two-line-segments-intersect/565282#565282
    # http://www.codeproject.com/Tips/862988/Find-the-intersection-point-of-two-line-segments
    r = a[1] - a[0]
    s = b[1] - b[0]
    v = b[0] - a[0]
    num = np_cross_product(v, r)
    denom = np_cross_product(r, s)
    # If r x s = 0 and (q - p) x r = 0, then the two lines are collinear.
    if np.isclose(denom, 0) and np.isclose(num, 0):
        # 1. If either  0 <= (q - p) * r <= r * r or 0 <= (p - q) * s <= * s
        # then the two lines are overlapping,
        if(considerCollinearOverlapAsIntersect):
            vDotR = np.dot(v, r)
            aDotS = np.dot(-v, s)
            if (0 <= vDotR  and vDotR <= np.dot(r,r)) or (0 <= aDotS  and aDotS <= np.dot(s,s)):
                return True
        # 2. If neither 0 <= (q - p) * r = r * r nor 0 <= (p - q) * s <= s * s
        # then the two lines are collinear but disjoint.
        # No need to implement this expression, as it follows from the expression above.
        return None
    if np.isclose(denom, 0) and not np.isclose(num, 0):
        # Parallel and non intersecting
        return None
    u = num / denom
    t = np_cross_product(v, s) / denom
    if u >= 0 and u <= 1 and t >= 0 and t <= 1:
        res = b[0] + (s*u)
        return res
    # Otherwise, the two line segments are not parallel but do not intersect.
    return None