我如何确定两条直线是否相交,如果相交,在x,y点处?


当前回答

只是想提一下,一个很好的解释和明确的解决方案可以在数字食谱系列中找到。我有这本书的第三版,答案在1117页21.4节。另一种不同命名的解决方案可以在玛丽娜·加夫里洛娃(Marina Gavrilova)的论文中找到。在我看来,她的解决办法要简单一些。

我的实现如下:

bool NuGeometry::IsBetween(const double& x0, const double& x, const double& x1){
   return (x >= x0) && (x <= x1);
}

bool NuGeometry::FindIntersection(const double& x0, const double& y0, 
     const double& x1, const double& y1,
     const double& a0, const double& b0, 
     const double& a1, const double& b1, 
     double& xy, double& ab) {
   // four endpoints are x0, y0 & x1,y1 & a0,b0 & a1,b1
   // returned values xy and ab are the fractional distance along xy and ab
   // and are only defined when the result is true

   bool partial = false;
   double denom = (b0 - b1) * (x0 - x1) - (y0 - y1) * (a0 - a1);
   if (denom == 0) {
      xy = -1;
      ab = -1;
   } else {
      xy = (a0 * (y1 - b1) + a1 * (b0 - y1) + x1 * (b1 - b0)) / denom;
      partial = NuGeometry::IsBetween(0, xy, 1);
      if (partial) {
         // no point calculating this unless xy is between 0 & 1
         ab = (y1 * (x0 - a1) + b1 * (x1 - x0) + y0 * (a1 - x1)) / denom; 
      }
   }
   if ( partial && NuGeometry::IsBetween(0, ab, 1)) {
      ab = 1-ab;
      xy = 1-xy;
      return true;
   }  else return false;
}

其他回答

我认为这个问题有一个更简单的解决方案。今天我想到了另一个想法,看起来效果不错(至少在2D中)。你所要做的就是计算两条直线的交点,然后检查计算的交点是否在两条线段的边界框内。如果是,两条线段相交。就是这样。

编辑:

这就是我如何计算交集(我不知道我在哪里找到了这个代码片段)

Point3D

来自

System.Windows.Media.Media3D

public static Point3D? Intersection(Point3D start1, Point3D end1, Point3D start2, Point3D end2) {

        double a1 = end1.Y - start1.Y;
        double b1 = start1.X - end1.X;
        double c1 = a1 * start1.X + b1 * start1.Y;

        double a2 = end2.Y - start2.Y;
        double b2 = start2.X - end2.X;
        double c2 = a2 * start2.X + b2 * start2.Y;

        double det = a1 * b2 - a2 * b1;
        if (det == 0) { // lines are parallel
            return null;
        }

        double x = (b2 * c1 - b1 * c2) / det;
        double y = (a1 * c2 - a2 * c1) / det;

        return new Point3D(x, y, 0.0);
    }

这是我的BoundingBox类(为了回答的目的而简化):

public class BoundingBox {
    private Point3D min = new Point3D();
    private Point3D max = new Point3D();

    public BoundingBox(Point3D point) {
        min = point;
        max = point;
    }

    public Point3D Min {
        get { return min; }
        set { min = value; }
    }

    public Point3D Max {
        get { return max; }
        set { max = value; }
    }

    public bool Contains(BoundingBox box) {
        bool contains =
            min.X <= box.min.X && max.X >= box.max.X &&
            min.Y <= box.min.Y && max.Y >= box.max.Y &&
            min.Z <= box.min.Z && max.Z >= box.max.Z;
        return contains;
    }

    public bool Contains(Point3D point) {
        return Contains(new BoundingBox(point));
    }

}

问题可以简化成这样一个问题:从A到B和从C到D的两条直线相交吗?然后你可以问它四次(在直线和矩形的四条边之间)。

这是做这个的矢量数学。假设A到B的直线就是问题中的直线C到D的直线是其中一条矩形直线。我的表示法是Ax是A的x坐标Cy是c的y坐标“*”表示点积,例如A*B = Ax*Bx + Ay*By。

E = B-A = ( Bx-Ax, By-Ay )
F = D-C = ( Dx-Cx, Dy-Cy ) 
P = ( -Ey, Ex )
h = ( (A-C) * P ) / ( F * P )

h是键。如果h在0和1之间,两条线相交,否则不相交。如果F*P为零,当然不能进行计算,但在这种情况下,直线是平行的,因此只有在明显的情况下才相交。

交点是C + F*h。

更多的乐趣:

如果h恰好等于0或1,两条直线的端点相交。你可以认为这是一个“交集”,也可以认为不是。

具体来说,h是直线长度乘以多少才能恰好与另一条直线相交。

因此,如果h<0,这意味着矩形线在给定直线的“后面”(“方向”是“从A到B”),如果h>1,矩形线在给定直线的“前面”。

推导:

A和C是指向直线起点的向量;E和F是由A和C端点组成的直线。

对于平面上任意两条不平行线,必须恰好有一对标量g和h,使得这个方程成立:

A + E*g = C + F*h

为什么?因为两条不平行线必须相交,这意味着你可以将这两条线按一定比例缩放并相互接触。

(起初,这看起来像一个有两个未知数的方程!但当你考虑到这是一个二维矢量方程时,它就不是,这意味着这是一对x和y的方程)

我们必须消去其中一个变量。一个简单的方法是使E项为零。要做到这一点,用一个向量对方程两边做点积这个向量与E点乘到0,我把上面的向量称为P,我做了E的明显变换。

你现在有:

A*P = C*P + F*P*h
(A-C)*P = (F*P)*h
( (A-C)*P ) / (F*P) = h

iMalc回答的Python版本:

def find_intersection( p0, p1, p2, p3 ) :

    s10_x = p1[0] - p0[0]
    s10_y = p1[1] - p0[1]
    s32_x = p3[0] - p2[0]
    s32_y = p3[1] - p2[1]

    denom = s10_x * s32_y - s32_x * s10_y

    if denom == 0 : return None # collinear

    denom_is_positive = denom > 0

    s02_x = p0[0] - p2[0]
    s02_y = p0[1] - p2[1]

    s_numer = s10_x * s02_y - s10_y * s02_x

    if (s_numer < 0) == denom_is_positive : return None # no collision

    t_numer = s32_x * s02_y - s32_y * s02_x

    if (t_numer < 0) == denom_is_positive : return None # no collision

    if (s_numer > denom) == denom_is_positive or (t_numer > denom) == denom_is_positive : return None # no collision


    # collision detected

    t = t_numer / denom

    intersection_point = [ p0[0] + (t * s10_x), p0[1] + (t * s10_y) ]


    return intersection_point

C和Objective-C

基于Gareth Rees的回答

const AGKLine AGKLineZero = (AGKLine){(CGPoint){0.0, 0.0}, (CGPoint){0.0, 0.0}};

AGKLine AGKLineMake(CGPoint start, CGPoint end)
{
    return (AGKLine){start, end};
}

double AGKLineLength(AGKLine l)
{
    return CGPointLengthBetween_AGK(l.start, l.end);
}

BOOL AGKLineIntersection(AGKLine l1, AGKLine l2, CGPoint *out_pointOfIntersection)
{
    // http://stackoverflow.com/a/565282/202451

    CGPoint p = l1.start;
    CGPoint q = l2.start;
    CGPoint r = CGPointSubtract_AGK(l1.end, l1.start);
    CGPoint s = CGPointSubtract_AGK(l2.end, l2.start);
    
    double s_r_crossProduct = CGPointCrossProductZComponent_AGK(r, s);
    double t = CGPointCrossProductZComponent_AGK(CGPointSubtract_AGK(q, p), s) / s_r_crossProduct;
    double u = CGPointCrossProductZComponent_AGK(CGPointSubtract_AGK(q, p), r) / s_r_crossProduct;
    
    if(t < 0 || t > 1.0 || u < 0 || u > 1.0)
    {
        if(out_pointOfIntersection != NULL)
        {
            *out_pointOfIntersection = CGPointZero;
        }
        return NO;
    }
    else
    {
        if(out_pointOfIntersection != NULL)
        {
            CGPoint i = CGPointAdd_AGK(p, CGPointMultiply_AGK(r, t));
            *out_pointOfIntersection = i;
        }
        return YES;
    }
}

CGFloat CGPointCrossProductZComponent_AGK(CGPoint v1, CGPoint v2)
{
    return v1.x * v2.y - v1.y * v2.x;
}

CGPoint CGPointSubtract_AGK(CGPoint p1, CGPoint p2)
{
    return (CGPoint){p1.x - p2.x, p1.y - p2.y};
}

CGPoint CGPointAdd_AGK(CGPoint p1, CGPoint p2)
{
    return (CGPoint){p1.x + p2.x, p1.y + p2.y};
}

CGFloat CGPointCrossProductZComponent_AGK(CGPoint v1, CGPoint v2)
{
    return v1.x * v2.y - v1.y * v2.x;
}

CGPoint CGPointMultiply_AGK(CGPoint p1, CGFloat factor)
{
    return (CGPoint){p1.x * factor, p1.y * factor};
}

许多函数和结构都是私有的,但是你应该很容易就能知道发生了什么。 这是公开的在这个回购https://github.com/hfossli/AGGeometryKit/

一个c++程序,用于检查两条给定线段是否相交

#include <iostream>
using namespace std;

struct Point
{
    int x;
    int y;
};

// Given three colinear points p, q, r, the function checks if
// point q lies on line segment 'pr'
bool onSegment(Point p, Point q, Point r)
{
    if (q.x <= max(p.x, r.x) && q.x >= min(p.x, r.x) &&
        q.y <= max(p.y, r.y) && q.y >= min(p.y, r.y))
       return true;

    return false;
}

// To find orientation of ordered triplet (p, q, r).
// The function returns following values
// 0 --> p, q and r are colinear
// 1 --> Clockwise
// 2 --> Counterclockwise
int orientation(Point p, Point q, Point r)
{
    // See 10th slides from following link for derivation of the formula
    // http://www.dcs.gla.ac.uk/~pat/52233/slides/Geometry1x1.pdf
    int val = (q.y - p.y) * (r.x - q.x) -
              (q.x - p.x) * (r.y - q.y);

    if (val == 0) return 0;  // colinear

    return (val > 0)? 1: 2; // clock or counterclock wise
}

// The main function that returns true if line segment 'p1q1'
// and 'p2q2' intersect.
bool doIntersect(Point p1, Point q1, Point p2, Point q2)
{
    // Find the four orientations needed for general and
    // special cases
    int o1 = orientation(p1, q1, p2);
    int o2 = orientation(p1, q1, q2);
    int o3 = orientation(p2, q2, p1);
    int o4 = orientation(p2, q2, q1);

    // General case
    if (o1 != o2 && o3 != o4)
        return true;

    // Special Cases
    // p1, q1 and p2 are colinear and p2 lies on segment p1q1
    if (o1 == 0 && onSegment(p1, p2, q1)) return true;

    // p1, q1 and p2 are colinear and q2 lies on segment p1q1
    if (o2 == 0 && onSegment(p1, q2, q1)) return true;

    // p2, q2 and p1 are colinear and p1 lies on segment p2q2
    if (o3 == 0 && onSegment(p2, p1, q2)) return true;

     // p2, q2 and q1 are colinear and q1 lies on segment p2q2
    if (o4 == 0 && onSegment(p2, q1, q2)) return true;

    return false; // Doesn't fall in any of the above cases
}

// Driver program to test above functions
int main()
{
    struct Point p1 = {1, 1}, q1 = {10, 1};
    struct Point p2 = {1, 2}, q2 = {10, 2};

    doIntersect(p1, q1, p2, q2)? cout << "Yes\n": cout << "No\n";

    p1 = {10, 0}, q1 = {0, 10};
    p2 = {0, 0}, q2 = {10, 10};
    doIntersect(p1, q1, p2, q2)? cout << "Yes\n": cout << "No\n";

    p1 = {-5, -5}, q1 = {0, 0};
    p2 = {1, 1}, q2 = {10, 10};
    doIntersect(p1, q1, p2, q2)? cout << "Yes\n": cout << "No\n";

    return 0;
}