我如何确定两条直线是否相交,如果相交,在x,y点处?
当前回答
我认为这个问题有一个更简单的解决方案。今天我想到了另一个想法,看起来效果不错(至少在2D中)。你所要做的就是计算两条直线的交点,然后检查计算的交点是否在两条线段的边界框内。如果是,两条线段相交。就是这样。
编辑:
这就是我如何计算交集(我不知道我在哪里找到了这个代码片段)
Point3D
来自
System.Windows.Media.Media3D
public static Point3D? Intersection(Point3D start1, Point3D end1, Point3D start2, Point3D end2) {
double a1 = end1.Y - start1.Y;
double b1 = start1.X - end1.X;
double c1 = a1 * start1.X + b1 * start1.Y;
double a2 = end2.Y - start2.Y;
double b2 = start2.X - end2.X;
double c2 = a2 * start2.X + b2 * start2.Y;
double det = a1 * b2 - a2 * b1;
if (det == 0) { // lines are parallel
return null;
}
double x = (b2 * c1 - b1 * c2) / det;
double y = (a1 * c2 - a2 * c1) / det;
return new Point3D(x, y, 0.0);
}
这是我的BoundingBox类(为了回答的目的而简化):
public class BoundingBox {
private Point3D min = new Point3D();
private Point3D max = new Point3D();
public BoundingBox(Point3D point) {
min = point;
max = point;
}
public Point3D Min {
get { return min; }
set { min = value; }
}
public Point3D Max {
get { return max; }
set { max = value; }
}
public bool Contains(BoundingBox box) {
bool contains =
min.X <= box.min.X && max.X >= box.max.X &&
min.Y <= box.min.Y && max.Y >= box.max.Y &&
min.Z <= box.min.Z && max.Z >= box.max.Z;
return contains;
}
public bool Contains(Point3D point) {
return Contains(new BoundingBox(point));
}
}
其他回答
找到两条线段的正确交点是一项具有大量边缘情况的非简单任务。下面是一个用Java编写的、有效的、经过测试的解决方案。
本质上,在求两条线段的交点时,有三种情况会发生:
线段不相交 有一个唯一的交点 交点是另一段
注意:在代码中,我假设x1 = x2和y1 = y2的线段(x1, y1), (x2, y2)是有效的线段。从数学上讲,线段由不同的点组成,但为了完整起见,我在这个实现中允许线段作为点。
代码是从我的github回购
/**
* This snippet finds the intersection of two line segments.
* The intersection may either be empty, a single point or the
* intersection is a subsegment there's an overlap.
*/
import static java.lang.Math.abs;
import static java.lang.Math.max;
import static java.lang.Math.min;
import java.util.ArrayList;
import java.util.List;
public class LineSegmentLineSegmentIntersection {
// Small epsilon used for double value comparison.
private static final double EPS = 1e-5;
// 2D Point class.
public static class Pt {
double x, y;
public Pt(double x, double y) {
this.x = x;
this.y = y;
}
public boolean equals(Pt pt) {
return abs(x - pt.x) < EPS && abs(y - pt.y) < EPS;
}
}
// Finds the orientation of point 'c' relative to the line segment (a, b)
// Returns 0 if all three points are collinear.
// Returns -1 if 'c' is clockwise to segment (a, b), i.e right of line formed by the segment.
// Returns +1 if 'c' is counter clockwise to segment (a, b), i.e left of line
// formed by the segment.
public static int orientation(Pt a, Pt b, Pt c) {
double value = (b.y - a.y) * (c.x - b.x) -
(b.x - a.x) * (c.y - b.y);
if (abs(value) < EPS) return 0;
return (value > 0) ? -1 : +1;
}
// Tests whether point 'c' is on the line segment (a, b).
// Ensure first that point c is collinear to segment (a, b) and
// then check whether c is within the rectangle formed by (a, b)
public static boolean pointOnLine(Pt a, Pt b, Pt c) {
return orientation(a, b, c) == 0 &&
min(a.x, b.x) <= c.x && c.x <= max(a.x, b.x) &&
min(a.y, b.y) <= c.y && c.y <= max(a.y, b.y);
}
// Determines whether two segments intersect.
public static boolean segmentsIntersect(Pt p1, Pt p2, Pt p3, Pt p4) {
// Get the orientation of points p3 and p4 in relation
// to the line segment (p1, p2)
int o1 = orientation(p1, p2, p3);
int o2 = orientation(p1, p2, p4);
int o3 = orientation(p3, p4, p1);
int o4 = orientation(p3, p4, p2);
// If the points p1, p2 are on opposite sides of the infinite
// line formed by (p3, p4) and conversly p3, p4 are on opposite
// sides of the infinite line formed by (p1, p2) then there is
// an intersection.
if (o1 != o2 && o3 != o4) return true;
// Collinear special cases (perhaps these if checks can be simplified?)
if (o1 == 0 && pointOnLine(p1, p2, p3)) return true;
if (o2 == 0 && pointOnLine(p1, p2, p4)) return true;
if (o3 == 0 && pointOnLine(p3, p4, p1)) return true;
if (o4 == 0 && pointOnLine(p3, p4, p2)) return true;
return false;
}
public static List<Pt> getCommonEndpoints(Pt p1, Pt p2, Pt p3, Pt p4) {
List<Pt> points = new ArrayList<>();
if (p1.equals(p3)) {
points.add(p1);
if (p2.equals(p4)) points.add(p2);
} else if (p1.equals(p4)) {
points.add(p1);
if (p2.equals(p3)) points.add(p2);
} else if (p2.equals(p3)) {
points.add(p2);
if (p1.equals(p4)) points.add(p1);
} else if (p2.equals(p4)) {
points.add(p2);
if (p1.equals(p3)) points.add(p1);
}
return points;
}
// Finds the intersection point(s) of two line segments. Unlike regular line
// segments, segments which are points (x1 = x2 and y1 = y2) are allowed.
public static Pt[] lineSegmentLineSegmentIntersection(Pt p1, Pt p2, Pt p3, Pt p4) {
// No intersection.
if (!segmentsIntersect(p1, p2, p3, p4)) return new Pt[]{};
// Both segments are a single point.
if (p1.equals(p2) && p2.equals(p3) && p3.equals(p4))
return new Pt[]{p1};
List<Pt> endpoints = getCommonEndpoints(p1, p2, p3, p4);
int n = endpoints.size();
// One of the line segments is an intersecting single point.
// NOTE: checking only n == 1 is insufficient to return early
// because the solution might be a sub segment.
boolean singleton = p1.equals(p2) || p3.equals(p4);
if (n == 1 && singleton) return new Pt[]{endpoints.get(0)};
// Segments are equal.
if (n == 2) return new Pt[]{endpoints.get(0), endpoints.get(1)};
boolean collinearSegments = (orientation(p1, p2, p3) == 0) &&
(orientation(p1, p2, p4) == 0);
// The intersection will be a sub-segment of the two
// segments since they overlap each other.
if (collinearSegments) {
// Segment #2 is enclosed in segment #1
if (pointOnLine(p1, p2, p3) && pointOnLine(p1, p2, p4))
return new Pt[]{p3, p4};
// Segment #1 is enclosed in segment #2
if (pointOnLine(p3, p4, p1) && pointOnLine(p3, p4, p2))
return new Pt[]{p1, p2};
// The subsegment is part of segment #1 and part of segment #2.
// Find the middle points which correspond to this segment.
Pt midPoint1 = pointOnLine(p1, p2, p3) ? p3 : p4;
Pt midPoint2 = pointOnLine(p3, p4, p1) ? p1 : p2;
// There is actually only one middle point!
if (midPoint1.equals(midPoint2)) return new Pt[]{midPoint1};
return new Pt[]{midPoint1, midPoint2};
}
/* Beyond this point there is a unique intersection point. */
// Segment #1 is a vertical line.
if (abs(p1.x - p2.x) < EPS) {
double m = (p4.y - p3.y) / (p4.x - p3.x);
double b = p3.y - m * p3.x;
return new Pt[]{new Pt(p1.x, m * p1.x + b)};
}
// Segment #2 is a vertical line.
if (abs(p3.x - p4.x) < EPS) {
double m = (p2.y - p1.y) / (p2.x - p1.x);
double b = p1.y - m * p1.x;
return new Pt[]{new Pt(p3.x, m * p3.x + b)};
}
double m1 = (p2.y - p1.y) / (p2.x - p1.x);
double m2 = (p4.y - p3.y) / (p4.x - p3.x);
double b1 = p1.y - m1 * p1.x;
double b2 = p3.y - m2 * p3.x;
double x = (b2 - b1) / (m1 - m2);
double y = (m1 * b2 - m2 * b1) / (m1 - m2);
return new Pt[]{new Pt(x, y)};
}
}
下面是一个简单的用法示例:
public static void main(String[] args) {
// Segment #1 is (p1, p2), segment #2 is (p3, p4)
Pt p1, p2, p3, p4;
p1 = new Pt(-2, 4); p2 = new Pt(3, 3);
p3 = new Pt(0, 0); p4 = new Pt(2, 4);
Pt[] points = lineSegmentLineSegmentIntersection(p1, p2, p3, p4);
Pt point = points[0];
// Prints: (1.636, 3.273)
System.out.printf("(%.3f, %.3f)\n", point.x, point.y);
p1 = new Pt(-10, 0); p2 = new Pt(+10, 0);
p3 = new Pt(-5, 0); p4 = new Pt(+5, 0);
points = lineSegmentLineSegmentIntersection(p1, p2, p3, p4);
Pt point1 = points[0], point2 = points[1];
// Prints: (-5.000, 0.000) (5.000, 0.000)
System.out.printf("(%.3f, %.3f) (%.3f, %.3f)\n", point1.x, point1.y, point2.x, point2.y);
}
许多答案把所有的计算都打包成一个函数。如果您需要计算直线斜率、y轴截距或x轴截距,以便在代码的其他地方使用,那么这些计算将是冗余的。我分离出了各自的函数,使用了明显的变量名,并注释了我的代码以使其更易于理解。我需要知道直线是否无限超出它们的端点,所以在JavaScript中:
http://jsfiddle.net/skibulk/evmqq00u/
var point_a = {x:0, y:10},
point_b = {x:12, y:12},
point_c = {x:10, y:0},
point_d = {x:0, y:0},
slope_ab = slope(point_a, point_b),
slope_bc = slope(point_b, point_c),
slope_cd = slope(point_c, point_d),
slope_da = slope(point_d, point_a),
yint_ab = y_intercept(point_a, slope_ab),
yint_bc = y_intercept(point_b, slope_bc),
yint_cd = y_intercept(point_c, slope_cd),
yint_da = y_intercept(point_d, slope_da),
xint_ab = x_intercept(point_a, slope_ab, yint_ab),
xint_bc = x_intercept(point_b, slope_bc, yint_bc),
xint_cd = x_intercept(point_c, slope_cd, yint_cd),
xint_da = x_intercept(point_d, slope_da, yint_da),
point_aa = intersect(slope_da, yint_da, xint_da, slope_ab, yint_ab, xint_ab),
point_bb = intersect(slope_ab, yint_ab, xint_ab, slope_bc, yint_bc, xint_bc),
point_cc = intersect(slope_bc, yint_bc, xint_bc, slope_cd, yint_cd, xint_cd),
point_dd = intersect(slope_cd, yint_cd, xint_cd, slope_da, yint_da, xint_da);
console.log(point_a, point_b, point_c, point_d);
console.log(slope_ab, slope_bc, slope_cd, slope_da);
console.log(yint_ab, yint_bc, yint_cd, yint_da);
console.log(xint_ab, xint_bc, xint_cd, xint_da);
console.log(point_aa, point_bb, point_cc, point_dd);
function slope(point_a, point_b) {
var i = (point_b.y - point_a.y) / (point_b.x - point_a.x);
if (i === -Infinity) return Infinity;
if (i === -0) return 0;
return i;
}
function y_intercept(point, slope) {
// Horizontal Line
if (slope == 0) return point.y;
// Vertical Line
if (slope == Infinity)
{
// THE Y-Axis
if (point.x == 0) return Infinity;
// No Intercept
return null;
}
// Angled Line
return point.y - (slope * point.x);
}
function x_intercept(point, slope, yint) {
// Vertical Line
if (slope == Infinity) return point.x;
// Horizontal Line
if (slope == 0)
{
// THE X-Axis
if (point.y == 0) return Infinity;
// No Intercept
return null;
}
// Angled Line
return -yint / slope;
}
// Intersection of two infinite lines
function intersect(slope_a, yint_a, xint_a, slope_b, yint_b, xint_b) {
if (slope_a == slope_b)
{
// Equal Lines
if (yint_a == yint_b && xint_a == xint_b) return Infinity;
// Parallel Lines
return null;
}
// First Line Vertical
if (slope_a == Infinity)
{
return {
x: xint_a,
y: (slope_b * xint_a) + yint_b
};
}
// Second Line Vertical
if (slope_b == Infinity)
{
return {
x: xint_b,
y: (slope_a * xint_b) + yint_a
};
}
// Not Equal, Not Parallel, Not Vertical
var i = (yint_b - yint_a) / (slope_a - slope_b);
return {
x: i,
y: (slope_a * i) + yint_a
};
}
只是想提一下,一个很好的解释和明确的解决方案可以在数字食谱系列中找到。我有这本书的第三版,答案在1117页21.4节。另一种不同命名的解决方案可以在玛丽娜·加夫里洛娃(Marina Gavrilova)的论文中找到。在我看来,她的解决办法要简单一些。
我的实现如下:
bool NuGeometry::IsBetween(const double& x0, const double& x, const double& x1){
return (x >= x0) && (x <= x1);
}
bool NuGeometry::FindIntersection(const double& x0, const double& y0,
const double& x1, const double& y1,
const double& a0, const double& b0,
const double& a1, const double& b1,
double& xy, double& ab) {
// four endpoints are x0, y0 & x1,y1 & a0,b0 & a1,b1
// returned values xy and ab are the fractional distance along xy and ab
// and are only defined when the result is true
bool partial = false;
double denom = (b0 - b1) * (x0 - x1) - (y0 - y1) * (a0 - a1);
if (denom == 0) {
xy = -1;
ab = -1;
} else {
xy = (a0 * (y1 - b1) + a1 * (b0 - y1) + x1 * (b1 - b0)) / denom;
partial = NuGeometry::IsBetween(0, xy, 1);
if (partial) {
// no point calculating this unless xy is between 0 & 1
ab = (y1 * (x0 - a1) + b1 * (x1 - x0) + y0 * (a1 - x1)) / denom;
}
}
if ( partial && NuGeometry::IsBetween(0, ab, 1)) {
ab = 1-ab;
xy = 1-xy;
return true;
} else return false;
}
上面有很多解决方案,但我认为下面的解决方案很简单,很容易理解。
矢量AB和矢量CD相交当且仅当
端点a和b在线段CD的两边。 端点c和d在线段AB的对边。
更具体地说,a和b在线段CD的对面当且仅当两个三元组中有一个是逆时针顺序的。
Intersect(a, b, c, d)
if CCW(a, c, d) == CCW(b, c, d)
return false;
else if CCW(a, b, c) == CCW(a, b, d)
return false;
else
return true;
这里的CCW代表逆时针,根据点的方向返回真/假。
来源:http://compgeom.cs.uiuc.edu/~jeffe/teaching/373/notes/x06-sweepline.pdf 第二页
如果矩形的每条边都是一条线段,并且用户绘制的部分也是一条线段,那么您只需检查用户绘制的线段是否与四条边线段相交。这应该是一个相当简单的练习,给定每个段的起点和终点。