我如何确定两条直线是否相交,如果相交,在x,y点处?


当前回答

这是基于Gareth Ree的回答。它还返回线段重叠的情况。用c++编写的V是一个简单的向量类。其中二维中两个向量的外积返回一个标量。通过了学校自动测试系统的测试。

//Required input point must be colinear with the line
bool on_segment(const V& p, const LineSegment& l)
{
    //If a point is on the line, the sum of the vectors formed by the point to the line endpoints must be equal
    V va = p - l.pa;
    V vb = p - l.pb;
    R ma = va.magnitude();
    R mb = vb.magnitude();
    R ml = (l.pb - l.pa).magnitude();
    R s = ma + mb;
    bool r = s <= ml + epsilon;
    return r;
}

//Compute using vector math
// Returns 0 points if the lines do not intersect or overlap
// Returns 1 point if the lines intersect
//  Returns 2 points if the lines overlap, contain the points where overlapping start starts and stop
std::vector<V> intersect(const LineSegment& la, const LineSegment& lb)
{
    std::vector<V> r;

    //http://stackoverflow.com/questions/563198/how-do-you-detect-where-two-line-segments-intersect
    V oa, ob, da, db; //Origin and direction vectors
    R sa, sb; //Scalar values
    oa = la.pa;
    da = la.pb - la.pa;
    ob = lb.pa;
    db = lb.pb - lb.pa;

    if (da.cross(db) == 0 && (ob - oa).cross(da) == 0) //If colinear
    {
        if (on_segment(lb.pa, la) && on_segment(lb.pb, la))
        {
            r.push_back(lb.pa);
            r.push_back(lb.pb);
            dprintf("colinear, overlapping\n");
            return r;
        }

        if (on_segment(la.pa, lb) && on_segment(la.pb, lb))
        {
            r.push_back(la.pa);
            r.push_back(la.pb);
            dprintf("colinear, overlapping\n");
            return r;
        }

        if (on_segment(la.pa, lb))
            r.push_back(la.pa);

        if (on_segment(la.pb, lb))
            r.push_back(la.pb);

        if (on_segment(lb.pa, la))
            r.push_back(lb.pa);

        if (on_segment(lb.pb, la))
            r.push_back(lb.pb);

        if (r.size() == 0)
            dprintf("colinear, non-overlapping\n");
        else
            dprintf("colinear, overlapping\n");

        return r;
    }

    if (da.cross(db) == 0 && (ob - oa).cross(da) != 0)
    {
        dprintf("parallel non-intersecting\n");
        return r;
    }

    //Math trick db cross db == 0, which is a single scalar in 2D.
    //Crossing both sides with vector db gives:
    sa = (ob - oa).cross(db) / da.cross(db);

    //Crossing both sides with vector da gives
    sb = (oa - ob).cross(da) / db.cross(da);

    if (0 <= sa && sa <= 1 && 0 <= sb && sb <= 1)
    {
        dprintf("intersecting\n");
        r.push_back(oa + da * sa);
        return r;
    }

    dprintf("non-intersecting, non-parallel, non-colinear, non-overlapping\n");
    return r;
}

其他回答

上面有很多解决方案,但我认为下面的解决方案很简单,很容易理解。

矢量AB和矢量CD相交当且仅当

端点a和b在线段CD的两边。 端点c和d在线段AB的对边。

更具体地说,a和b在线段CD的对面当且仅当两个三元组中有一个是逆时针顺序的。

Intersect(a, b, c, d)
 if CCW(a, c, d) == CCW(b, c, d)
    return false;
 else if CCW(a, b, c) == CCW(a, b, d)
    return false;
 else
    return true;

这里的CCW代表逆时针,根据点的方向返回真/假。

来源:http://compgeom.cs.uiuc.edu/~jeffe/teaching/373/notes/x06-sweepline.pdf 第二页

下面是一个基本的c#线段实现,并有相应的交点检测代码。它需要一个名为Vector2f的2D向量/点结构,不过你可以用任何其他具有X/Y属性的类型替换它。如果更适合你的需要,你也可以用double替换float。

这段代码用于我的. net物理库Boing。

public struct LineSegment2f
{
    public Vector2f From { get; }
    public Vector2f To { get; }

    public LineSegment2f(Vector2f @from, Vector2f to)
    {
        From = @from;
        To = to;
    }

    public Vector2f Delta => new Vector2f(To.X - From.X, To.Y - From.Y);

    /// <summary>
    /// Attempt to intersect two line segments.
    /// </summary>
    /// <remarks>
    /// Even if the line segments do not intersect, <paramref name="t"/> and <paramref name="u"/> will be set.
    /// If the lines are parallel, <paramref name="t"/> and <paramref name="u"/> are set to <see cref="float.NaN"/>.
    /// </remarks>
    /// <param name="other">The line to attempt intersection of this line with.</param>
    /// <param name="intersectionPoint">The point of intersection if within the line segments, or empty..</param>
    /// <param name="t">The distance along this line at which intersection would occur, or NaN if lines are collinear/parallel.</param>
    /// <param name="u">The distance along the other line at which intersection would occur, or NaN if lines are collinear/parallel.</param>
    /// <returns><c>true</c> if the line segments intersect, otherwise <c>false</c>.</returns>
    public bool TryIntersect(LineSegment2f other, out Vector2f intersectionPoint, out float t, out float u)
    {
        var p = From;
        var q = other.From;
        var r = Delta;
        var s = other.Delta;

        // t = (q − p) × s / (r × s)
        // u = (q − p) × r / (r × s)

        var denom = Fake2DCross(r, s);

        if (denom == 0)
        {
            // lines are collinear or parallel
            t = float.NaN;
            u = float.NaN;
            intersectionPoint = default(Vector2f);
            return false;
        }

        var tNumer = Fake2DCross(q - p, s);
        var uNumer = Fake2DCross(q - p, r);

        t = tNumer / denom;
        u = uNumer / denom;

        if (t < 0 || t > 1 || u < 0 || u > 1)
        {
            // line segments do not intersect within their ranges
            intersectionPoint = default(Vector2f);
            return false;
        }

        intersectionPoint = p + r * t;
        return true;
    }

    private static float Fake2DCross(Vector2f a, Vector2f b)
    {
        return a.X * b.Y - a.Y * b.X;
    }
}

我从《多视图几何》这本书里读到了这些算法

以下文本使用

'作为转置符号

*作为点积

当用作算子时,X作为叉乘

1. 线的定义

点x_vec = (x, y)'在直线ax + by + c = 0上

标记L = (a, b, c)',点为(x, y, 1)'为齐次坐标

直线方程可以写成

(x, y, 1)(a, b, c)' = 0或x' * L = 0

2. 直线交点

我们有两条直线L1=(a1, b1, c1)', L2=(a2, b2, c2)'

假设x是一个点,一个向量,x = L1 x L2 (L1叉乘L2)。

注意,x始终是一个二维点,如果你对(L1xL2)是一个三元素向量,x是一个二维坐标感到困惑,请阅读齐次坐标。

根据三重积,我们知道

L1 * (L1 x L2) = 0, L2 * (L1 x L2) = 0,因为L1,L2共平面

我们用向量x代替L1*x,那么L1*x=0, L2*x=0,这意味着x在L1和L2上,x是交点。

注意,这里x是齐次坐标,如果x的最后一个元素是零,这意味着L1和L2是平行的。

我试过其中一些答案,但它们对我不起作用(对不起伙计们);在网上搜索之后,我找到了这个。

对他的代码做了一点修改,我现在有了这个函数,它将返回交点,如果没有找到交点,它将返回- 1,1。

    Public Function intercetion(ByVal ax As Integer, ByVal ay As Integer, ByVal bx As Integer, ByVal by As Integer, ByVal cx As Integer, ByVal cy As Integer, ByVal dx As Integer, ByVal dy As Integer) As Point
    '//  Determines the intersection point of the line segment defined by points A and B
    '//  with the line segment defined by points C and D.
    '//
    '//  Returns YES if the intersection point was found, and stores that point in X,Y.
    '//  Returns NO if there is no determinable intersection point, in which case X,Y will
    '//  be unmodified.

    Dim distAB, theCos, theSin, newX, ABpos As Double

    '//  Fail if either line segment is zero-length.
    If ax = bx And ay = by Or cx = dx And cy = dy Then Return New Point(-1, -1)

    '//  Fail if the segments share an end-point.
    If ax = cx And ay = cy Or bx = cx And by = cy Or ax = dx And ay = dy Or bx = dx And by = dy Then Return New Point(-1, -1)

    '//  (1) Translate the system so that point A is on the origin.
    bx -= ax
    by -= ay
    cx -= ax
    cy -= ay
    dx -= ax
    dy -= ay

    '//  Discover the length of segment A-B.
    distAB = Math.Sqrt(bx * bx + by * by)

    '//  (2) Rotate the system so that point B is on the positive X axis.
    theCos = bx / distAB
    theSin = by / distAB
    newX = cx * theCos + cy * theSin
    cy = cy * theCos - cx * theSin
    cx = newX
    newX = dx * theCos + dy * theSin
    dy = dy * theCos - dx * theSin
    dx = newX

    '//  Fail if segment C-D doesn't cross line A-B.
    If cy < 0 And dy < 0 Or cy >= 0 And dy >= 0 Then Return New Point(-1, -1)

    '//  (3) Discover the position of the intersection point along line A-B.
    ABpos = dx + (cx - dx) * dy / (dy - cy)

    '//  Fail if segment C-D crosses line A-B outside of segment A-B.
    If ABpos < 0 Or ABpos > distAB Then Return New Point(-1, -1)

    '//  (4) Apply the discovered position to line A-B in the original coordinate system.
    '*X=Ax+ABpos*theCos
    '*Y=Ay+ABpos*theSin

    '//  Success.
    Return New Point(ax + ABpos * theCos, ay + ABpos * theSin)
End Function

我尝试了很多方法,然后我决定自己写。就是这样:

bool IsBetween (float x, float b1, float b2)
{
   return ( ((x >= (b1 - 0.1f)) && 
        (x <= (b2 + 0.1f))) || 
        ((x >= (b2 - 0.1f)) &&
        (x <= (b1 + 0.1f))));
}

bool IsSegmentsColliding(   POINTFLOAT lineA,
                POINTFLOAT lineB,
                POINTFLOAT line2A,
                POINTFLOAT line2B)
{
    float deltaX1 = lineB.x - lineA.x;
    float deltaX2 = line2B.x - line2A.x;
    float deltaY1 = lineB.y - lineA.y;
    float deltaY2 = line2B.y - line2A.y;

    if (abs(deltaX1) < 0.01f && 
        abs(deltaX2) < 0.01f) // Both are vertical lines
        return false;
    if (abs((deltaY1 / deltaX1) -
        (deltaY2 / deltaX2)) < 0.001f) // Two parallel line
        return false;

    float xCol = (  (   (deltaX1 * deltaX2) * 
                        (line2A.y - lineA.y)) - 
                    (line2A.x * deltaY2 * deltaX1) + 
                    (lineA.x * deltaY1 * deltaX2)) / 
                 ((deltaY1 * deltaX2) - (deltaY2 * deltaX1));
    float yCol = 0;
    if (deltaX1 < 0.01f) // L1 is a vertical line
        yCol = ((xCol * deltaY2) + 
                (line2A.y * deltaX2) - 
                (line2A.x * deltaY2)) / deltaX2;
    else // L1 is acceptable
        yCol = ((xCol * deltaY1) +
                (lineA.y * deltaX1) -
                (lineA.x * deltaY1)) / deltaX1;

    bool isCol =    IsBetween(xCol, lineA.x, lineB.x) &&
            IsBetween(yCol, lineA.y, lineB.y) &&
            IsBetween(xCol, line2A.x, line2B.x) &&
            IsBetween(yCol, line2A.y, line2B.y);
    return isCol;
}

根据这两个公式:(由直线方程和其他公式简化而来)