我如何确定两条直线是否相交,如果相交,在x,y点处?
当前回答
C和Objective-C
基于Gareth Rees的回答
const AGKLine AGKLineZero = (AGKLine){(CGPoint){0.0, 0.0}, (CGPoint){0.0, 0.0}};
AGKLine AGKLineMake(CGPoint start, CGPoint end)
{
return (AGKLine){start, end};
}
double AGKLineLength(AGKLine l)
{
return CGPointLengthBetween_AGK(l.start, l.end);
}
BOOL AGKLineIntersection(AGKLine l1, AGKLine l2, CGPoint *out_pointOfIntersection)
{
// http://stackoverflow.com/a/565282/202451
CGPoint p = l1.start;
CGPoint q = l2.start;
CGPoint r = CGPointSubtract_AGK(l1.end, l1.start);
CGPoint s = CGPointSubtract_AGK(l2.end, l2.start);
double s_r_crossProduct = CGPointCrossProductZComponent_AGK(r, s);
double t = CGPointCrossProductZComponent_AGK(CGPointSubtract_AGK(q, p), s) / s_r_crossProduct;
double u = CGPointCrossProductZComponent_AGK(CGPointSubtract_AGK(q, p), r) / s_r_crossProduct;
if(t < 0 || t > 1.0 || u < 0 || u > 1.0)
{
if(out_pointOfIntersection != NULL)
{
*out_pointOfIntersection = CGPointZero;
}
return NO;
}
else
{
if(out_pointOfIntersection != NULL)
{
CGPoint i = CGPointAdd_AGK(p, CGPointMultiply_AGK(r, t));
*out_pointOfIntersection = i;
}
return YES;
}
}
CGFloat CGPointCrossProductZComponent_AGK(CGPoint v1, CGPoint v2)
{
return v1.x * v2.y - v1.y * v2.x;
}
CGPoint CGPointSubtract_AGK(CGPoint p1, CGPoint p2)
{
return (CGPoint){p1.x - p2.x, p1.y - p2.y};
}
CGPoint CGPointAdd_AGK(CGPoint p1, CGPoint p2)
{
return (CGPoint){p1.x + p2.x, p1.y + p2.y};
}
CGFloat CGPointCrossProductZComponent_AGK(CGPoint v1, CGPoint v2)
{
return v1.x * v2.y - v1.y * v2.x;
}
CGPoint CGPointMultiply_AGK(CGPoint p1, CGFloat factor)
{
return (CGPoint){p1.x * factor, p1.y * factor};
}
许多函数和结构都是私有的,但是你应该很容易就能知道发生了什么。 这是公开的在这个回购https://github.com/hfossli/AGGeometryKit/
其他回答
曾经在这里被接受的答案是不正确的(它已经被不接受了,所以万岁!)它不能正确地消除所有非交点。简单地说,它可能有效,但也可能失败,特别是在0和1被认为对h有效的情况下。
考虑以下情况:
直线(4,1)-(5,1)和(0,0)-(0,2)
这两条垂线显然不重叠。
= (4,1) B =(5、1) C = (0, 0) D = (0, 2) E = (1) - (4,1) = (1,0) F = (0, 2) - (0, 0) = (0, 2) P = (0, 1) h =((4,1) -(0, 0))点(0,1)/((0,2)点(0,1))= 0
根据上面的答案,这两条线段在端点处相遇(值为0和1)。该端点为:
(0, 0) + (0, 2) * 0 = (0, 0)
So, apparently the two line segments meet at (0,0), which is on line CD, but not on line AB. So what is going wrong? The answer is that the values of 0 and 1 are not valid and only sometimes HAPPEN to correctly predict endpoint intersection. When the extension of one line (but not the other) would meet the line segment, the algorithm predicts an intersection of line segments, but this is not correct. I imagine that by testing starting with AB vs CD and then also testing with CD vs AB, this problem would be eliminated. Only if both fall between 0 and 1 inclusively can they be said to intersect.
如果你必须预测端点,我建议使用向量叉乘法。
-Dan
有一个很好的方法来解决这个问题就是用向量叉乘。定义二维向量叉乘v × w为vx wy−vy wx。
假设这两条线段从p到p + r,从q到q + s。那么第一行上的任意点都可以表示为p + t r(对于标量参数t),第二行上的任意点可以表示为q + u s(对于标量参数u)。
如果t和u满足以下条件,两条直线相交:
P + t r = q + u s
两边叉乘s,得到
(p + r) × s = (q + u s) × s
由于s × s = 0,这意味着
T (r × s) = (q−p) × s
因此,求解t:
T = (q−p) × s / (r × s)
同样地,我们可以解出u:
(p + r) × r = (q + u s) × r U (s × r) = (p−q) × r U = (p−q) × r / (s × r)
为了减少计算步骤,可以方便地将其重写为以下形式(记住s × r =−r × s):
U = q−p × r / (r × s)
现在有四种情况:
If r × s = 0 and (q − p) × r = 0, then the two lines are collinear. In this case, express the endpoints of the second segment (q and q + s) in terms of the equation of the first line segment (p + t r): t0 = (q − p) · r / (r · r) t1 = (q + s − p) · r / (r · r) = t0 + s · r / (r · r) If the interval between t0 and t1 intersects the interval [0, 1] then the line segments are collinear and overlapping; otherwise they are collinear and disjoint. Note that if s and r point in opposite directions, then s · r < 0 and so the interval to be checked is [t1, t0] rather than [t0, t1]. If r × s = 0 and (q − p) × r ≠ 0, then the two lines are parallel and non-intersecting. If r × s ≠ 0 and 0 ≤ t ≤ 1 and 0 ≤ u ≤ 1, the two line segments meet at the point p + t r = q + u s. Otherwise, the two line segments are not parallel but do not intersect.
来源:该方法是3D线相交算法的2维专门化,来自Ronald Goldman发表在Graphics Gems,第304页的文章“三条线在三维空间中的相交”。在三维空间中,通常的情况是直线是倾斜的(既不平行也不相交),在这种情况下,该方法给出了两条直线最接近的点。
以下是对加文回答的改进。马普的解决方案也类似,但都没有推迟分割。
这实际上也是Gareth Rees的答案的一个实际应用,因为向量积在2D中的等价是补点积,这段代码用了其中的三个。切换到3D并使用叉积,在最后插入s和t,结果是3D中直线之间的两个最近点。 不管怎样,2D解:
int get_line_intersection(float p0_x, float p0_y, float p1_x, float p1_y,
float p2_x, float p2_y, float p3_x, float p3_y, float *i_x, float *i_y)
{
float s02_x, s02_y, s10_x, s10_y, s32_x, s32_y, s_numer, t_numer, denom, t;
s10_x = p1_x - p0_x;
s10_y = p1_y - p0_y;
s32_x = p3_x - p2_x;
s32_y = p3_y - p2_y;
denom = s10_x * s32_y - s32_x * s10_y;
if (denom == 0)
return 0; // Collinear
bool denomPositive = denom > 0;
s02_x = p0_x - p2_x;
s02_y = p0_y - p2_y;
s_numer = s10_x * s02_y - s10_y * s02_x;
if ((s_numer < 0) == denomPositive)
return 0; // No collision
t_numer = s32_x * s02_y - s32_y * s02_x;
if ((t_numer < 0) == denomPositive)
return 0; // No collision
if (((s_numer > denom) == denomPositive) || ((t_numer > denom) == denomPositive))
return 0; // No collision
// Collision detected
t = t_numer / denom;
if (i_x != NULL)
*i_x = p0_x + (t * s10_x);
if (i_y != NULL)
*i_y = p0_y + (t * s10_y);
return 1;
}
基本上,它将除法延迟到最后一刻,并将大多数测试移动到某些计算完成之前,从而增加了早期退出。最后,它还避免了直线平行时的除零情况。
您可能还想考虑使用ε检验,而不是与零比较。非常接近平行的线会产生稍微偏离的结果。这不是一个bug,这是浮点数学的一个限制。
找到两条线段的正确交点是一项具有大量边缘情况的非简单任务。下面是一个用Java编写的、有效的、经过测试的解决方案。
本质上,在求两条线段的交点时,有三种情况会发生:
线段不相交 有一个唯一的交点 交点是另一段
注意:在代码中,我假设x1 = x2和y1 = y2的线段(x1, y1), (x2, y2)是有效的线段。从数学上讲,线段由不同的点组成,但为了完整起见,我在这个实现中允许线段作为点。
代码是从我的github回购
/**
* This snippet finds the intersection of two line segments.
* The intersection may either be empty, a single point or the
* intersection is a subsegment there's an overlap.
*/
import static java.lang.Math.abs;
import static java.lang.Math.max;
import static java.lang.Math.min;
import java.util.ArrayList;
import java.util.List;
public class LineSegmentLineSegmentIntersection {
// Small epsilon used for double value comparison.
private static final double EPS = 1e-5;
// 2D Point class.
public static class Pt {
double x, y;
public Pt(double x, double y) {
this.x = x;
this.y = y;
}
public boolean equals(Pt pt) {
return abs(x - pt.x) < EPS && abs(y - pt.y) < EPS;
}
}
// Finds the orientation of point 'c' relative to the line segment (a, b)
// Returns 0 if all three points are collinear.
// Returns -1 if 'c' is clockwise to segment (a, b), i.e right of line formed by the segment.
// Returns +1 if 'c' is counter clockwise to segment (a, b), i.e left of line
// formed by the segment.
public static int orientation(Pt a, Pt b, Pt c) {
double value = (b.y - a.y) * (c.x - b.x) -
(b.x - a.x) * (c.y - b.y);
if (abs(value) < EPS) return 0;
return (value > 0) ? -1 : +1;
}
// Tests whether point 'c' is on the line segment (a, b).
// Ensure first that point c is collinear to segment (a, b) and
// then check whether c is within the rectangle formed by (a, b)
public static boolean pointOnLine(Pt a, Pt b, Pt c) {
return orientation(a, b, c) == 0 &&
min(a.x, b.x) <= c.x && c.x <= max(a.x, b.x) &&
min(a.y, b.y) <= c.y && c.y <= max(a.y, b.y);
}
// Determines whether two segments intersect.
public static boolean segmentsIntersect(Pt p1, Pt p2, Pt p3, Pt p4) {
// Get the orientation of points p3 and p4 in relation
// to the line segment (p1, p2)
int o1 = orientation(p1, p2, p3);
int o2 = orientation(p1, p2, p4);
int o3 = orientation(p3, p4, p1);
int o4 = orientation(p3, p4, p2);
// If the points p1, p2 are on opposite sides of the infinite
// line formed by (p3, p4) and conversly p3, p4 are on opposite
// sides of the infinite line formed by (p1, p2) then there is
// an intersection.
if (o1 != o2 && o3 != o4) return true;
// Collinear special cases (perhaps these if checks can be simplified?)
if (o1 == 0 && pointOnLine(p1, p2, p3)) return true;
if (o2 == 0 && pointOnLine(p1, p2, p4)) return true;
if (o3 == 0 && pointOnLine(p3, p4, p1)) return true;
if (o4 == 0 && pointOnLine(p3, p4, p2)) return true;
return false;
}
public static List<Pt> getCommonEndpoints(Pt p1, Pt p2, Pt p3, Pt p4) {
List<Pt> points = new ArrayList<>();
if (p1.equals(p3)) {
points.add(p1);
if (p2.equals(p4)) points.add(p2);
} else if (p1.equals(p4)) {
points.add(p1);
if (p2.equals(p3)) points.add(p2);
} else if (p2.equals(p3)) {
points.add(p2);
if (p1.equals(p4)) points.add(p1);
} else if (p2.equals(p4)) {
points.add(p2);
if (p1.equals(p3)) points.add(p1);
}
return points;
}
// Finds the intersection point(s) of two line segments. Unlike regular line
// segments, segments which are points (x1 = x2 and y1 = y2) are allowed.
public static Pt[] lineSegmentLineSegmentIntersection(Pt p1, Pt p2, Pt p3, Pt p4) {
// No intersection.
if (!segmentsIntersect(p1, p2, p3, p4)) return new Pt[]{};
// Both segments are a single point.
if (p1.equals(p2) && p2.equals(p3) && p3.equals(p4))
return new Pt[]{p1};
List<Pt> endpoints = getCommonEndpoints(p1, p2, p3, p4);
int n = endpoints.size();
// One of the line segments is an intersecting single point.
// NOTE: checking only n == 1 is insufficient to return early
// because the solution might be a sub segment.
boolean singleton = p1.equals(p2) || p3.equals(p4);
if (n == 1 && singleton) return new Pt[]{endpoints.get(0)};
// Segments are equal.
if (n == 2) return new Pt[]{endpoints.get(0), endpoints.get(1)};
boolean collinearSegments = (orientation(p1, p2, p3) == 0) &&
(orientation(p1, p2, p4) == 0);
// The intersection will be a sub-segment of the two
// segments since they overlap each other.
if (collinearSegments) {
// Segment #2 is enclosed in segment #1
if (pointOnLine(p1, p2, p3) && pointOnLine(p1, p2, p4))
return new Pt[]{p3, p4};
// Segment #1 is enclosed in segment #2
if (pointOnLine(p3, p4, p1) && pointOnLine(p3, p4, p2))
return new Pt[]{p1, p2};
// The subsegment is part of segment #1 and part of segment #2.
// Find the middle points which correspond to this segment.
Pt midPoint1 = pointOnLine(p1, p2, p3) ? p3 : p4;
Pt midPoint2 = pointOnLine(p3, p4, p1) ? p1 : p2;
// There is actually only one middle point!
if (midPoint1.equals(midPoint2)) return new Pt[]{midPoint1};
return new Pt[]{midPoint1, midPoint2};
}
/* Beyond this point there is a unique intersection point. */
// Segment #1 is a vertical line.
if (abs(p1.x - p2.x) < EPS) {
double m = (p4.y - p3.y) / (p4.x - p3.x);
double b = p3.y - m * p3.x;
return new Pt[]{new Pt(p1.x, m * p1.x + b)};
}
// Segment #2 is a vertical line.
if (abs(p3.x - p4.x) < EPS) {
double m = (p2.y - p1.y) / (p2.x - p1.x);
double b = p1.y - m * p1.x;
return new Pt[]{new Pt(p3.x, m * p3.x + b)};
}
double m1 = (p2.y - p1.y) / (p2.x - p1.x);
double m2 = (p4.y - p3.y) / (p4.x - p3.x);
double b1 = p1.y - m1 * p1.x;
double b2 = p3.y - m2 * p3.x;
double x = (b2 - b1) / (m1 - m2);
double y = (m1 * b2 - m2 * b1) / (m1 - m2);
return new Pt[]{new Pt(x, y)};
}
}
下面是一个简单的用法示例:
public static void main(String[] args) {
// Segment #1 is (p1, p2), segment #2 is (p3, p4)
Pt p1, p2, p3, p4;
p1 = new Pt(-2, 4); p2 = new Pt(3, 3);
p3 = new Pt(0, 0); p4 = new Pt(2, 4);
Pt[] points = lineSegmentLineSegmentIntersection(p1, p2, p3, p4);
Pt point = points[0];
// Prints: (1.636, 3.273)
System.out.printf("(%.3f, %.3f)\n", point.x, point.y);
p1 = new Pt(-10, 0); p2 = new Pt(+10, 0);
p3 = new Pt(-5, 0); p4 = new Pt(+5, 0);
points = lineSegmentLineSegmentIntersection(p1, p2, p3, p4);
Pt point1 = points[0], point2 = points[1];
// Prints: (-5.000, 0.000) (5.000, 0.000)
System.out.printf("(%.3f, %.3f) (%.3f, %.3f)\n", point1.x, point1.y, point2.x, point2.y);
}
这对我来说很有效。从这里拍的。
// calculates intersection and checks for parallel lines.
// also checks that the intersection point is actually on
// the line segment p1-p2
Point findIntersection(Point p1,Point p2,
Point p3,Point p4) {
float xD1,yD1,xD2,yD2,xD3,yD3;
float dot,deg,len1,len2;
float segmentLen1,segmentLen2;
float ua,ub,div;
// calculate differences
xD1=p2.x-p1.x;
xD2=p4.x-p3.x;
yD1=p2.y-p1.y;
yD2=p4.y-p3.y;
xD3=p1.x-p3.x;
yD3=p1.y-p3.y;
// calculate the lengths of the two lines
len1=sqrt(xD1*xD1+yD1*yD1);
len2=sqrt(xD2*xD2+yD2*yD2);
// calculate angle between the two lines.
dot=(xD1*xD2+yD1*yD2); // dot product
deg=dot/(len1*len2);
// if abs(angle)==1 then the lines are parallell,
// so no intersection is possible
if(abs(deg)==1) return null;
// find intersection Pt between two lines
Point pt=new Point(0,0);
div=yD2*xD1-xD2*yD1;
ua=(xD2*yD3-yD2*xD3)/div;
ub=(xD1*yD3-yD1*xD3)/div;
pt.x=p1.x+ua*xD1;
pt.y=p1.y+ua*yD1;
// calculate the combined length of the two segments
// between Pt-p1 and Pt-p2
xD1=pt.x-p1.x;
xD2=pt.x-p2.x;
yD1=pt.y-p1.y;
yD2=pt.y-p2.y;
segmentLen1=sqrt(xD1*xD1+yD1*yD1)+sqrt(xD2*xD2+yD2*yD2);
// calculate the combined length of the two segments
// between Pt-p3 and Pt-p4
xD1=pt.x-p3.x;
xD2=pt.x-p4.x;
yD1=pt.y-p3.y;
yD2=pt.y-p4.y;
segmentLen2=sqrt(xD1*xD1+yD1*yD1)+sqrt(xD2*xD2+yD2*yD2);
// if the lengths of both sets of segments are the same as
// the lenghts of the two lines the point is actually
// on the line segment.
// if the point isn’t on the line, return null
if(abs(len1-segmentLen1)>0.01 || abs(len2-segmentLen2)>0.01)
return null;
// return the valid intersection
return pt;
}
class Point{
float x,y;
Point(float x, float y){
this.x = x;
this.y = y;
}
void set(float x, float y){
this.x = x;
this.y = y;
}
}