我如何确定两条直线是否相交,如果相交,在x,y点处?


当前回答

曾经在这里被接受的答案是不正确的(它已经被不接受了,所以万岁!)它不能正确地消除所有非交点。简单地说,它可能有效,但也可能失败,特别是在0和1被认为对h有效的情况下。

考虑以下情况:

直线(4,1)-(5,1)和(0,0)-(0,2)

这两条垂线显然不重叠。

= (4,1) B =(5、1) C = (0, 0) D = (0, 2) E = (1) - (4,1) = (1,0) F = (0, 2) - (0, 0) = (0, 2) P = (0, 1) h =((4,1) -(0, 0))点(0,1)/((0,2)点(0,1))= 0

根据上面的答案,这两条线段在端点处相遇(值为0和1)。该端点为:

(0, 0) + (0, 2) * 0 = (0, 0)

So, apparently the two line segments meet at (0,0), which is on line CD, but not on line AB. So what is going wrong? The answer is that the values of 0 and 1 are not valid and only sometimes HAPPEN to correctly predict endpoint intersection. When the extension of one line (but not the other) would meet the line segment, the algorithm predicts an intersection of line segments, but this is not correct. I imagine that by testing starting with AB vs CD and then also testing with CD vs AB, this problem would be eliminated. Only if both fall between 0 and 1 inclusively can they be said to intersect.

如果你必须预测端点,我建议使用向量叉乘法。

-Dan

其他回答

问题C:如何检测两条线段是否相交?

我也搜索过同样的话题,但我对答案并不满意。所以我写了一篇文章,非常详细地解释了如何检查两条线段是否与大量图像相交。这是完整的(并经过测试的)java代码。

以下是这篇文章,截取了最重要的部分:

检查线段a是否与线段b相交的算法如下所示:

什么是边界框?下面是两个线段的边界框:

如果两个边界框都有交点,则移动线段a,使其中一点在(0|0)处。现在你有了一条经过a定义的原点的直线,现在以同样的方式移动线段b,检查线段b的新点是否在直线a的不同两侧。如果是这样,则反过来检查。如果也是这样,线段相交。如果不相交,它们就不相交。

问题A:两条线段在哪里相交?

你知道两条线段a和b相交。如果你不知道,用我在C题中给你的工具检查一下。

现在你可以通过一些情况,并得到解决与七年级数学(见代码和交互示例)。

问题B:你如何检测两条线是否相交?

假设点A = (x1, y1)点B = (x2, y2) C = (x_3, y_3) D = (x_4, y_4) 第一行由AB定义(A != B),第二行由CD定义(C != D)。

function doLinesIntersect(AB, CD) {
    if (x1 == x2) {
        return !(x3 == x4 && x1 != x3);
    } else if (x3 == x4) {
        return true;
    } else {
        // Both lines are not parallel to the y-axis
        m1 = (y1-y2)/(x1-x2);
        m2 = (y3-y4)/(x3-x4);
        return m1 != m2;
    }
}

问题D:两条直线在哪里相交?

检查问题B,它们是否相交。

直线a和b由每条直线上的两个点定义。 你基本上可以用和问题A相同的逻辑。

如果矩形的每条边都是一条线段,并且用户绘制的部分也是一条线段,那么您只需检查用户绘制的线段是否与四条边线段相交。这应该是一个相当简单的练习,给定每个段的起点和终点。

我尝试了很多方法,然后我决定自己写。就是这样:

bool IsBetween (float x, float b1, float b2)
{
   return ( ((x >= (b1 - 0.1f)) && 
        (x <= (b2 + 0.1f))) || 
        ((x >= (b2 - 0.1f)) &&
        (x <= (b1 + 0.1f))));
}

bool IsSegmentsColliding(   POINTFLOAT lineA,
                POINTFLOAT lineB,
                POINTFLOAT line2A,
                POINTFLOAT line2B)
{
    float deltaX1 = lineB.x - lineA.x;
    float deltaX2 = line2B.x - line2A.x;
    float deltaY1 = lineB.y - lineA.y;
    float deltaY2 = line2B.y - line2A.y;

    if (abs(deltaX1) < 0.01f && 
        abs(deltaX2) < 0.01f) // Both are vertical lines
        return false;
    if (abs((deltaY1 / deltaX1) -
        (deltaY2 / deltaX2)) < 0.001f) // Two parallel line
        return false;

    float xCol = (  (   (deltaX1 * deltaX2) * 
                        (line2A.y - lineA.y)) - 
                    (line2A.x * deltaY2 * deltaX1) + 
                    (lineA.x * deltaY1 * deltaX2)) / 
                 ((deltaY1 * deltaX2) - (deltaY2 * deltaX1));
    float yCol = 0;
    if (deltaX1 < 0.01f) // L1 is a vertical line
        yCol = ((xCol * deltaY2) + 
                (line2A.y * deltaX2) - 
                (line2A.x * deltaY2)) / deltaX2;
    else // L1 is acceptable
        yCol = ((xCol * deltaY1) +
                (lineA.y * deltaX1) -
                (lineA.x * deltaY1)) / deltaX1;

    bool isCol =    IsBetween(xCol, lineA.x, lineB.x) &&
            IsBetween(yCol, lineA.y, lineB.y) &&
            IsBetween(xCol, line2A.x, line2B.x) &&
            IsBetween(yCol, line2A.y, line2B.y);
    return isCol;
}

根据这两个公式:(由直线方程和其他公式简化而来)

基于@Gareth Rees的回答,Python版本:

import numpy as np

def np_perp( a ) :
    b = np.empty_like(a)
    b[0] = a[1]
    b[1] = -a[0]
    return b

def np_cross_product(a, b):
    return np.dot(a, np_perp(b))

def np_seg_intersect(a, b, considerCollinearOverlapAsIntersect = False):
    # https://stackoverflow.com/questions/563198/how-do-you-detect-where-two-line-segments-intersect/565282#565282
    # http://www.codeproject.com/Tips/862988/Find-the-intersection-point-of-two-line-segments
    r = a[1] - a[0]
    s = b[1] - b[0]
    v = b[0] - a[0]
    num = np_cross_product(v, r)
    denom = np_cross_product(r, s)
    # If r x s = 0 and (q - p) x r = 0, then the two lines are collinear.
    if np.isclose(denom, 0) and np.isclose(num, 0):
        # 1. If either  0 <= (q - p) * r <= r * r or 0 <= (p - q) * s <= * s
        # then the two lines are overlapping,
        if(considerCollinearOverlapAsIntersect):
            vDotR = np.dot(v, r)
            aDotS = np.dot(-v, s)
            if (0 <= vDotR  and vDotR <= np.dot(r,r)) or (0 <= aDotS  and aDotS <= np.dot(s,s)):
                return True
        # 2. If neither 0 <= (q - p) * r = r * r nor 0 <= (p - q) * s <= s * s
        # then the two lines are collinear but disjoint.
        # No need to implement this expression, as it follows from the expression above.
        return None
    if np.isclose(denom, 0) and not np.isclose(num, 0):
        # Parallel and non intersecting
        return None
    u = num / denom
    t = np_cross_product(v, s) / denom
    if u >= 0 and u <= 1 and t >= 0 and t <= 1:
        res = b[0] + (s*u)
        return res
    # Otherwise, the two line segments are not parallel but do not intersect.
    return None

以下是对加文回答的改进。马普的解决方案也类似,但都没有推迟分割。

这实际上也是Gareth Rees的答案的一个实际应用,因为向量积在2D中的等价是补点积,这段代码用了其中的三个。切换到3D并使用叉积,在最后插入s和t,结果是3D中直线之间的两个最近点。 不管怎样,2D解:

int get_line_intersection(float p0_x, float p0_y, float p1_x, float p1_y, 
    float p2_x, float p2_y, float p3_x, float p3_y, float *i_x, float *i_y)
{
    float s02_x, s02_y, s10_x, s10_y, s32_x, s32_y, s_numer, t_numer, denom, t;
    s10_x = p1_x - p0_x;
    s10_y = p1_y - p0_y;
    s32_x = p3_x - p2_x;
    s32_y = p3_y - p2_y;

    denom = s10_x * s32_y - s32_x * s10_y;
    if (denom == 0)
        return 0; // Collinear
    bool denomPositive = denom > 0;

    s02_x = p0_x - p2_x;
    s02_y = p0_y - p2_y;
    s_numer = s10_x * s02_y - s10_y * s02_x;
    if ((s_numer < 0) == denomPositive)
        return 0; // No collision

    t_numer = s32_x * s02_y - s32_y * s02_x;
    if ((t_numer < 0) == denomPositive)
        return 0; // No collision

    if (((s_numer > denom) == denomPositive) || ((t_numer > denom) == denomPositive))
        return 0; // No collision
    // Collision detected
    t = t_numer / denom;
    if (i_x != NULL)
        *i_x = p0_x + (t * s10_x);
    if (i_y != NULL)
        *i_y = p0_y + (t * s10_y);

    return 1;
}

基本上,它将除法延迟到最后一刻,并将大多数测试移动到某些计算完成之前,从而增加了早期退出。最后,它还避免了直线平行时的除零情况。

您可能还想考虑使用ε检验,而不是与零比较。非常接近平行的线会产生稍微偏离的结果。这不是一个bug,这是浮点数学的一个限制。