我如何确定两条直线是否相交,如果相交,在x,y点处?
当前回答
如果矩形的每条边都是一条线段,并且用户绘制的部分也是一条线段,那么您只需检查用户绘制的线段是否与四条边线段相交。这应该是一个相当简单的练习,给定每个段的起点和终点。
其他回答
曾经在这里被接受的答案是不正确的(它已经被不接受了,所以万岁!)它不能正确地消除所有非交点。简单地说,它可能有效,但也可能失败,特别是在0和1被认为对h有效的情况下。
考虑以下情况:
直线(4,1)-(5,1)和(0,0)-(0,2)
这两条垂线显然不重叠。
= (4,1) B =(5、1) C = (0, 0) D = (0, 2) E = (1) - (4,1) = (1,0) F = (0, 2) - (0, 0) = (0, 2) P = (0, 1) h =((4,1) -(0, 0))点(0,1)/((0,2)点(0,1))= 0
根据上面的答案,这两条线段在端点处相遇(值为0和1)。该端点为:
(0, 0) + (0, 2) * 0 = (0, 0)
So, apparently the two line segments meet at (0,0), which is on line CD, but not on line AB. So what is going wrong? The answer is that the values of 0 and 1 are not valid and only sometimes HAPPEN to correctly predict endpoint intersection. When the extension of one line (but not the other) would meet the line segment, the algorithm predicts an intersection of line segments, but this is not correct. I imagine that by testing starting with AB vs CD and then also testing with CD vs AB, this problem would be eliminated. Only if both fall between 0 and 1 inclusively can they be said to intersect.
如果你必须预测端点,我建议使用向量叉乘法。
-Dan
以下是对加文回答的改进。马普的解决方案也类似,但都没有推迟分割。
这实际上也是Gareth Rees的答案的一个实际应用,因为向量积在2D中的等价是补点积,这段代码用了其中的三个。切换到3D并使用叉积,在最后插入s和t,结果是3D中直线之间的两个最近点。 不管怎样,2D解:
int get_line_intersection(float p0_x, float p0_y, float p1_x, float p1_y,
float p2_x, float p2_y, float p3_x, float p3_y, float *i_x, float *i_y)
{
float s02_x, s02_y, s10_x, s10_y, s32_x, s32_y, s_numer, t_numer, denom, t;
s10_x = p1_x - p0_x;
s10_y = p1_y - p0_y;
s32_x = p3_x - p2_x;
s32_y = p3_y - p2_y;
denom = s10_x * s32_y - s32_x * s10_y;
if (denom == 0)
return 0; // Collinear
bool denomPositive = denom > 0;
s02_x = p0_x - p2_x;
s02_y = p0_y - p2_y;
s_numer = s10_x * s02_y - s10_y * s02_x;
if ((s_numer < 0) == denomPositive)
return 0; // No collision
t_numer = s32_x * s02_y - s32_y * s02_x;
if ((t_numer < 0) == denomPositive)
return 0; // No collision
if (((s_numer > denom) == denomPositive) || ((t_numer > denom) == denomPositive))
return 0; // No collision
// Collision detected
t = t_numer / denom;
if (i_x != NULL)
*i_x = p0_x + (t * s10_x);
if (i_y != NULL)
*i_y = p0_y + (t * s10_y);
return 1;
}
基本上,它将除法延迟到最后一刻,并将大多数测试移动到某些计算完成之前,从而增加了早期退出。最后,它还避免了直线平行时的除零情况。
您可能还想考虑使用ε检验,而不是与零比较。非常接近平行的线会产生稍微偏离的结果。这不是一个bug,这是浮点数学的一个限制。
如果矩形的每条边都是一条线段,并且用户绘制的部分也是一条线段,那么您只需检查用户绘制的线段是否与四条边线段相交。这应该是一个相当简单的练习,给定每个段的起点和终点。
我从《多视图几何》这本书里读到了这些算法
以下文本使用
'作为转置符号
*作为点积
当用作算子时,X作为叉乘
1. 线的定义
点x_vec = (x, y)'在直线ax + by + c = 0上
标记L = (a, b, c)',点为(x, y, 1)'为齐次坐标
直线方程可以写成
(x, y, 1)(a, b, c)' = 0或x' * L = 0
2. 直线交点
我们有两条直线L1=(a1, b1, c1)', L2=(a2, b2, c2)'
假设x是一个点,一个向量,x = L1 x L2 (L1叉乘L2)。
注意,x始终是一个二维点,如果你对(L1xL2)是一个三元素向量,x是一个二维坐标感到困惑,请阅读齐次坐标。
根据三重积,我们知道
L1 * (L1 x L2) = 0, L2 * (L1 x L2) = 0,因为L1,L2共平面
我们用向量x代替L1*x,那么L1*x=0, L2*x=0,这意味着x在L1和L2上,x是交点。
注意,这里x是齐次坐标,如果x的最后一个元素是零,这意味着L1和L2是平行的。
我认为这个问题有一个更简单的解决方案。今天我想到了另一个想法,看起来效果不错(至少在2D中)。你所要做的就是计算两条直线的交点,然后检查计算的交点是否在两条线段的边界框内。如果是,两条线段相交。就是这样。
编辑:
这就是我如何计算交集(我不知道我在哪里找到了这个代码片段)
Point3D
来自
System.Windows.Media.Media3D
public static Point3D? Intersection(Point3D start1, Point3D end1, Point3D start2, Point3D end2) {
double a1 = end1.Y - start1.Y;
double b1 = start1.X - end1.X;
double c1 = a1 * start1.X + b1 * start1.Y;
double a2 = end2.Y - start2.Y;
double b2 = start2.X - end2.X;
double c2 = a2 * start2.X + b2 * start2.Y;
double det = a1 * b2 - a2 * b1;
if (det == 0) { // lines are parallel
return null;
}
double x = (b2 * c1 - b1 * c2) / det;
double y = (a1 * c2 - a2 * c1) / det;
return new Point3D(x, y, 0.0);
}
这是我的BoundingBox类(为了回答的目的而简化):
public class BoundingBox {
private Point3D min = new Point3D();
private Point3D max = new Point3D();
public BoundingBox(Point3D point) {
min = point;
max = point;
}
public Point3D Min {
get { return min; }
set { min = value; }
}
public Point3D Max {
get { return max; }
set { max = value; }
}
public bool Contains(BoundingBox box) {
bool contains =
min.X <= box.min.X && max.X >= box.max.X &&
min.Y <= box.min.Y && max.Y >= box.max.Y &&
min.Z <= box.min.Z && max.Z >= box.max.Z;
return contains;
}
public bool Contains(Point3D point) {
return Contains(new BoundingBox(point));
}
}