我在问更多关于这对我的代码意味着什么。我能从数学上理解这些概念,只是很难理解它们在概念上的含义。例如,如果有人要对一个数据结构执行O(1)操作,我知道它必须执行的操作数量不会增长,因为有更多的项。O(n)操作意味着您将对每个元素执行一组操作。有人能帮我填一下吗?

比如O(n²)的运算会怎样? 如果一个操作是O(nlog (n))这是什么意思? 有人必须吸可卡因才能写出O(x!)吗?


当前回答

把它想象成垂直堆叠乐高积木(n),然后跳过它们。

O(1)表示在每一步,你什么都不做。高度保持不变。

O(n)表示在每一步,你堆叠c块,其中c1是常数。

O(n²)表示在每一步,你堆叠c2 x n个块,其中c2是一个常数,n是堆叠块的数量。

O(nlogn)表示在每一步,你堆叠c3 x n x logn个块,其中c3是一个常数,n是堆叠块的数量。

其他回答

我试图用c#和JavaScript给出简单的代码示例来解释。

C#

For List<int> numbers = new List<int> {1,2,3,4,5,6,7,12,543,7};

O(1)看起来像

return numbers.First();

O(n)看起来像

int result = 0;
foreach (int num in numbers)
{
  result += num;
}
return result;

O(nlog (n))是这样的

int result = 0;
foreach (int num in numbers)
{
    int index = numbers.Count - 1;
    while (index > 1)
    {
        // yeah, stupid, but couldn't come up with something more useful :-(
        result += numbers[index];
        index /= 2;
    }
}
return result;

O(n2)是这样的

int result = 0;
foreach (int outerNum in numbers)
{
    foreach (int innerNum in numbers)
    {
        result += outerNum * innerNum;
    }
}
return result;

O(n!)看起来,嗯,太累了,想不出任何简单的东西。 但我希望你能明白大意?


JavaScript

对于const数= [1,2,3,4,5,6,7,12,543,7];

O(1)看起来像

numbers[0];

O(n)看起来像

let result = 0;
for (num of numbers){
    result += num;
}

O(nlog (n))是这样的

let result = 0;
for (num of numbers){

    let index = numbers.length - 1;
    while (index > 1){
        // yeah, stupid, but couldn't come up with something more useful :-(
        result += numbers[index];
        index = Math.floor(index/2)
    }
}

O(n2)是这样的

let result = 0;
for (outerNum of numbers){
    for (innerNum of numbers){
        result += outerNum * innerNum;
    }
}

告诉你8年前的log(n)意味着你必须把一个长度为nlog的东西切成两半的次数,让它变成大小为n=1:p

O(nlogn)通常是排序 O(n²)通常是比较所有元素对

为了对被问到的问题保持真诚,我会用回答8岁孩子的方式来回答这个问题

假设一个冰淇淋小贩准备了许多不同形状的冰淇淋(比如N个),按顺序排列。 你想吃中间的冰淇淋

情况1:只有吃完所有比它小的冰淇淋,你才能吃冰淇淋 你将不得不吃掉一半准备好的冰淇淋(输入)。答案直接取决于输入的大小 解是o(N)阶的

情况2:—你可以直接吃中间的冰淇淋

解是O(1)

情况3:只有当你吃完所有比它小的冰淇淋时,你才能吃冰淇淋,每次你吃冰淇淋时,你都允许另一个孩子(每次都是新孩子)吃掉他所有的冰淇淋 总时间为N + N + N.......(N/2)次 溶液是O(N2)

一种思考的方式是:

O(N²)意味着对于每个元素,你都要对其他元素做一些事情,比如比较它们。冒泡排序就是一个例子。

O(N log N)意味着对于每个元素,你只需要看log N个元素。这通常是因为你知道一些元素,可以让你做出有效的选择。最有效的排序就是一个例子,比如归并排序。

O(N!)表示对N个元素的所有可能排列进行处理。旅行推销员就是一个例子,那里有N!访问节点的方法,暴力解决方案是查看每一种可能的排列的总代价,以找到最优的一个。

我是这样向我那些不懂技术的朋友描述的:

考虑多位数加法。很好的老式铅笔和纸的补充。就是你7-8岁时学的那种。给定两个三位数或四位数,你很容易就能求出它们加起来是多少。

如果我给你两个100位的数字,然后问你它们加起来是多少,即使你必须使用铅笔和纸,计算出来也会非常简单。一个聪明的孩子可以在几分钟内做这样的加法。这只需要大约100次操作。

现在,考虑多位数乘法。你可能在八九岁的时候就学会了。你(希望)做了很多重复的练习来学习它背后的机制。

Now, imagine I gave you those same two 100-digit numbers and told you to multiply them together. This would be a much, much harder task, something that would take you hours to do - and that you'd be unlikely to do without mistakes. The reason for this is that (this version of) multiplication is O(n^2); each digit in the bottom number has to be multiplied by each digit in the top number, leaving a total of about n^2 operations. In the case of the 100-digit numbers, that's 10,000 multiplications.