我在问更多关于这对我的代码意味着什么。我能从数学上理解这些概念,只是很难理解它们在概念上的含义。例如,如果有人要对一个数据结构执行O(1)操作,我知道它必须执行的操作数量不会增长,因为有更多的项。O(n)操作意味着您将对每个元素执行一组操作。有人能帮我填一下吗?
比如O(n²)的运算会怎样? 如果一个操作是O(nlog (n))这是什么意思? 有人必须吸可卡因才能写出O(x!)吗?
我在问更多关于这对我的代码意味着什么。我能从数学上理解这些概念,只是很难理解它们在概念上的含义。例如,如果有人要对一个数据结构执行O(1)操作,我知道它必须执行的操作数量不会增长,因为有更多的项。O(n)操作意味着您将对每个元素执行一组操作。有人能帮我填一下吗?
比如O(n²)的运算会怎样? 如果一个操作是O(nlog (n))这是什么意思? 有人必须吸可卡因才能写出O(x!)吗?
当前回答
big - o符号对代码的重要意义在于,当它所操作的“事物”数量增加一倍时,它将如何扩展。这里有一个具体的例子:
Big-O | computations for 10 things | computations for 100 things ---------------------------------------------------------------------- O(1) | 1 | 1 O(log(n)) | 3 | 7 O(n) | 10 | 100 O(n log(n)) | 30 | 700 O(n^2) | 100 | 10000
快速排序是O(nlog (n))而冒泡排序是O(n²)当排序10个东西时,快速排序比冒泡排序快3倍。但当对100个东西进行排序时,速度要快14倍!显然,选择最快的算法很重要。当您访问具有数百万行的数据库时,这可能意味着您的查询在0.2秒内执行,而不是花费数小时。
另一件需要考虑的事情是,糟糕的算法是摩尔定律无法帮助的事情。例如,如果你有一个O(n^3)的科学计算,它一天可以计算100个东西,处理器速度翻倍一天只能计算125个东西。然而,计算到O(n²),你每天要做1000件事情。
澄清: 实际上,Big-O并没有说不同算法在同一特定大小点上的性能比较,而是说同一算法在不同大小点上的性能比较:
computations computations computations Big-O | for 10 things | for 100 things | for 1000 things ---------------------------------------------------------------------- O(1) | 1 | 1 | 1 O(log(n)) | 1 | 3 | 7 O(n) | 1 | 10 | 100 O(n log(n)) | 1 | 33 | 664 O(n^2) | 1 | 100 | 10000
其他回答
把它想象成垂直堆叠乐高积木(n),然后跳过它们。
O(1)表示在每一步,你什么都不做。高度保持不变。
O(n)表示在每一步,你堆叠c块,其中c1是常数。
O(n²)表示在每一步,你堆叠c2 x n个块,其中c2是一个常数,n是堆叠块的数量。
O(nlogn)表示在每一步,你堆叠c3 x n x logn个块,其中c3是一个常数,n是堆叠块的数量。
其中很多都很容易用非编程的东西来演示,比如洗牌。
对一副牌进行排序通过遍历整副牌找到黑桃a,然后遍历整副牌找到黑桃2,以此类推最坏情况是n^2,如果这副牌已经倒着排序了。你看了52张牌52次。
一般来说,真正糟糕的算法不一定是故意的,它们通常是对其他东西的误用,比如在同一集合上线性重复的另一个方法中调用一个线性方法。
我是这样向我那些不懂技术的朋友描述的:
考虑多位数加法。很好的老式铅笔和纸的补充。就是你7-8岁时学的那种。给定两个三位数或四位数,你很容易就能求出它们加起来是多少。
如果我给你两个100位的数字,然后问你它们加起来是多少,即使你必须使用铅笔和纸,计算出来也会非常简单。一个聪明的孩子可以在几分钟内做这样的加法。这只需要大约100次操作。
现在,考虑多位数乘法。你可能在八九岁的时候就学会了。你(希望)做了很多重复的练习来学习它背后的机制。
Now, imagine I gave you those same two 100-digit numbers and told you to multiply them together. This would be a much, much harder task, something that would take you hours to do - and that you'd be unlikely to do without mistakes. The reason for this is that (this version of) multiplication is O(n^2); each digit in the bottom number has to be multiplied by each digit in the top number, leaving a total of about n^2 operations. In the case of the 100-digit numbers, that's 10,000 multiplications.
只是为了回应我上面帖子的一些评论:
Domenic - I'm on this site, and I care. Not for pedantry's sake, but because we - as programmers - typically care about precision. Using O( ) notation incorrectly in the style that some have done here renders it kind of meaningless; we may just as well say something takes n^2 units of time as O( n^2 ) under the conventions used here. Using the O( ) adds nothing. It's not just a small discrepancy between common usage and mathematical precision that I'm talking about, it's the difference between it being meaningful and it not.
我知道很多很多优秀的程序员都准确地使用这些术语。说“哦,我们是程序员,所以我们不在乎”会降低整个企业的成本。
一个接一个-嗯,不完全是,尽管我同意你的观点。对于任意大的n,它不是O(1)这是O()的定义。它只是表明O()对于有界n的适用性有限,在这里我们更愿意讨论所走的步数,而不是这个数字的界限。
有一件事由于某种原因还没有被提及:
当你看到像O(2^n)或O(n^3)这样的算法时,这通常意味着你将不得不接受一个不完美的问题答案,以获得可接受的性能。
在处理优化问题时,像这样的正确解决方案很常见。在合理的时间内给出一个近乎正确的答案,总比在机器腐烂成灰尘很久之后才给出一个正确答案要好。
以国际象棋为例:我不知道正确的解决方案是什么,但它可能是O(n^50)或更糟。从理论上讲,任何计算机都不可能真正计算出正确答案——即使你用宇宙中的每个粒子作为计算元素,在宇宙生命周期内尽可能短的时间内执行一项操作,你仍然会剩下很多零。(量子计算机能否解决这个问题是另一回事。)