我在问更多关于这对我的代码意味着什么。我能从数学上理解这些概念,只是很难理解它们在概念上的含义。例如,如果有人要对一个数据结构执行O(1)操作,我知道它必须执行的操作数量不会增长,因为有更多的项。O(n)操作意味着您将对每个元素执行一组操作。有人能帮我填一下吗?

比如O(n²)的运算会怎样? 如果一个操作是O(nlog (n))这是什么意思? 有人必须吸可卡因才能写出O(x!)吗?


当前回答

有一件事由于某种原因还没有被提及:

当你看到像O(2^n)或O(n^3)这样的算法时,这通常意味着你将不得不接受一个不完美的问题答案,以获得可接受的性能。

在处理优化问题时,像这样的正确解决方案很常见。在合理的时间内给出一个近乎正确的答案,总比在机器腐烂成灰尘很久之后才给出一个正确答案要好。

以国际象棋为例:我不知道正确的解决方案是什么,但它可能是O(n^50)或更糟。从理论上讲,任何计算机都不可能真正计算出正确答案——即使你用宇宙中的每个粒子作为计算元素,在宇宙生命周期内尽可能短的时间内执行一项操作,你仍然会剩下很多零。(量子计算机能否解决这个问题是另一回事。)

其他回答

我是这样想的,你有一个任务,要清理一个由坏人V引起的问题,他选择了N,你必须估计出当他增加N时,你需要多长时间来完成你的问题。

O(1) ->增加N并没有什么不同

O(log(N)) ->每次V翻倍N,你必须花费额外的时间T来完成任务。V又翻倍了N,你花了同样多的钱。

O(N) -> V N每翻一倍,花费的时间就翻一倍。

O(N²)- V N每翻一倍,花费的时间就增加4倍。(这不公平!!)

O(nlog (N)) -, V每翻一倍N,你就花两倍的时间,再多一点。

这些是算法的边界;计算机科学家想要描述大n值需要多长时间(当你分解密码学中使用的数字时,这很重要——如果计算机速度提高了10倍,你需要多使用多少位才能确保它们仍然需要100年而不是1年才能破解你的加密?)

有些界限可能有奇怪的表达式,如果它对涉及的人有影响的话。我在Knuth的《计算机编程艺术》中见过类似于O(nlog (N) log(log(N))的算法。(我一时想不起是哪一个了)

我喜欢don neufeld的答案,但我想我可以加上O(nlog n)

使用简单分治策略的算法可能是O(log n)最简单的例子是在排序列表中查找某个东西。你不需要从头开始扫描。你走到中间,你决定是向后走还是向前走,跳到中途,直到你找到你要找的东西。

如果您查看快速排序或归并排序算法,您将看到它们都采用将列表分成两半,对每一半排序(使用相同的算法,递归地),然后重新组合两半的方法。这种递归分治策略是O(nlog n)

If you think about it carefully, you'll see that quicksort does an O(n) partitioning algorithm on the whole n items, then an O(n) partitioning twice on n/2 items, then 4 times on n/4 items, etc... until you get to an n partitions on 1 item (which is degenerate). The number of times you divide n in half to get to 1 is approximately log n, and each step is O(n), so recursive divide and conquer is O(n log n). Mergesort builds the other way, starting with n recombinations of 1 item, and finishing with 1 recombination of n items, where the recombination of two sorted lists is O(n).

至于抽大麻写一个O(n!)算法,除非你别无选择。上面提到的旅行推销员问题被认为是这样一个问题。

其中很多都很容易用非编程的东西来演示,比如洗牌。

对一副牌进行排序通过遍历整副牌找到黑桃a,然后遍历整副牌找到黑桃2,以此类推最坏情况是n^2,如果这副牌已经倒着排序了。你看了52张牌52次。

一般来说,真正糟糕的算法不一定是故意的,它们通常是对其他东西的误用,比如在同一集合上线性重复的另一个方法中调用一个线性方法。

我会试着为一个真正的八岁男孩写一个解释,除了专业术语和数学概念。

比如O(n²)的运算会怎样?

如果你在一个聚会上,包括你在内有n个人。需要多少次握手才能让每个人都和其他人握手,因为人们可能会在某个时候忘记他们握手的人是谁。

注意:这近似于产生n(n-1)的单形,这足够接近于n²。

如果一个操作是O(nlog (n))这是什么意思?

你最喜欢的球队赢了,他们站在队伍里,队伍里有n名球员。你需要和每个玩家握手多少次,假设你要和每个玩家握手多次,多少次,玩家的号码n中有多少位数字。

注意:这将产生n * log n的10次方。

有人必须吸可卡因才能写出O(x!)吗?

你是一个富二代,你的衣柜里有很多衣服,每种衣服有x个抽屉,抽屉一个挨着一个,第一个抽屉里有一件衣服,每个抽屉里有和左边抽屉一样多的衣服,所以你有一顶帽子,两顶假发,…(x-1)条裤子,然后是x件衬衫。现在,用每个抽屉里的一件物品,你能装扮出多少种风格呢?

注意:这个例子表示一个决策树中有多少个叶结点,其中子结点数=深度,通过1 * 2 * 3 *完成。* x

有人必须吸可卡因才能写出O(x!)吗?

不用,用Prolog就行。如果您在Prolog中编写排序算法,只需描述每个元素都应该比前一个元素大,并让回溯为您进行排序,那么它将是O(x!)也称为“排列排序”。