我在问更多关于这对我的代码意味着什么。我能从数学上理解这些概念,只是很难理解它们在概念上的含义。例如,如果有人要对一个数据结构执行O(1)操作,我知道它必须执行的操作数量不会增长,因为有更多的项。O(n)操作意味着您将对每个元素执行一组操作。有人能帮我填一下吗?

比如O(n²)的运算会怎样? 如果一个操作是O(nlog (n))这是什么意思? 有人必须吸可卡因才能写出O(x!)吗?


当前回答

我是这样想的,你有一个任务,要清理一个由坏人V引起的问题,他选择了N,你必须估计出当他增加N时,你需要多长时间来完成你的问题。

O(1) ->增加N并没有什么不同

O(log(N)) ->每次V翻倍N,你必须花费额外的时间T来完成任务。V又翻倍了N,你花了同样多的钱。

O(N) -> V N每翻一倍,花费的时间就翻一倍。

O(N²)- V N每翻一倍,花费的时间就增加4倍。(这不公平!!)

O(nlog (N)) -, V每翻一倍N,你就花两倍的时间,再多一点。

这些是算法的边界;计算机科学家想要描述大n值需要多长时间(当你分解密码学中使用的数字时,这很重要——如果计算机速度提高了10倍,你需要多使用多少位才能确保它们仍然需要100年而不是1年才能破解你的加密?)

有些界限可能有奇怪的表达式,如果它对涉及的人有影响的话。我在Knuth的《计算机编程艺术》中见过类似于O(nlog (N) log(log(N))的算法。(我一时想不起是哪一个了)

其他回答

好吧,这里有一些非常好的答案,但几乎所有的答案似乎都犯了同样的错误,这是一个普遍的常见用法。

非正式地,我们写f(n) = O(g(n))如果,直到一个比例因子,对于所有n大于某个n0, g(n)大于f(n)。也就是说,f(n)的增长速度并不比g(n)快,或者从上到下以g(n)为界。这并没有告诉我们f(n)增长有多快,除了它保证不会比g(n)差。

一个具体的例子:n = O(2^n)我们都知道n的增长速度比2^n慢得多,所以我们可以说它的上界是指数函数。在n和2^n之间有很大的空间,所以它不是一个很紧的边界,但它仍然是一个合理的边界。

为什么我们(计算机科学家)使用边界而不是精确?因为a)边界通常更容易证明,b)它为我们提供了一种表达算法属性的简便方法。如果我说我的新算法是O(n.log n),这意味着在最坏的情况下,它的运行时间将在n个输入上以n.log n为界,对于足够大的n(尽管请参阅下面我的评论,当我可能不是指最坏情况时)。

如果相反,我们想说一个函数的增长速度与其他函数一样快,我们用theta来说明这一点(我将T(f(n))写成markdown表示\ (f(n))。T(g(n))是上下以g(n)为界的缩写,直到一个比例因子且渐近。

这是f (n) = T (g (n)) < = > f (n) = O (g (n))和g (n) = O (f (n))。在我们的例子中,我们可以看到n != T(2^n)因为2^n != O(n)。

为什么要担心这个呢?因为在你的问题中,你写了“一个人必须吸可卡因才能写出一个O(x!)?”答案是否定的——因为基本上你写的所有东西都会以阶乘函数为界。快速排序的运行时间是O(n!) -这不是一个严格的界限。

这里还有另一个微妙的维度。通常我们用O(g(n))表示最坏情况的输入,这样我们就得到了一个复合语句:在最坏情况下运行时间不会比g(n)步的算法差,同样是模缩放,而且n足够大,但有时我们想讨论平均情况甚至最佳情况的运行时间。

香草快速排序就是一个很好的例子。在最坏的情况下是T(n²)(实际上至少需要n²步,但不会多很多),但在平均情况下是T(n.log n),也就是说期望的步数与n.log n成正比。在最好的情况下也是T(n.log n) -但你可以改进它,例如,检查数组是否已经排序在哪种情况下,最佳运行时间将是T(n)。

How does this relate to your question about the practical realisations of these bounds? Well, unfortunately, O( ) notation hides constants which real-world implementations have to deal with. So although we can say that, for example, for a T(n^2) operation we have to visit every possible pair of elements, we don't know how many times we have to visit them (except that it's not a function of n). So we could have to visit every pair 10 times, or 10^10 times, and the T(n^2) statement makes no distinction. Lower order functions are also hidden - we could have to visit every pair of elements once, and every individual element 100 times, because n^2 + 100n = T(n^2). The idea behind O( ) notation is that for large enough n, this doesn't matter at all because n^2 gets so much larger than 100n that we don't even notice the impact of 100n on the running time. However, we often deal with 'sufficiently small' n such that constant factors and so on make a real, significant difference.

例如,快速排序(平均成本T(n.log n))和堆排序(平均成本T(n.log n))都是具有相同平均成本的排序算法——但快速排序通常比堆排序快得多。这是因为堆排序比快速排序对每个元素做了更多的比较。

这并不是说O()符号是无用的,只是不精确。对于小n来说,这是一个相当钝的工具。

(作为本文的最后一个注意事项,请记住O()表示法只是描述任何函数的增长——它不一定是时间,它可以是内存、分布式系统中交换的消息或并行算法所需的cpu数量。)

我会试着为一个真正的八岁男孩写一个解释,除了专业术语和数学概念。

比如O(n²)的运算会怎样?

如果你在一个聚会上,包括你在内有n个人。需要多少次握手才能让每个人都和其他人握手,因为人们可能会在某个时候忘记他们握手的人是谁。

注意:这近似于产生n(n-1)的单形,这足够接近于n²。

如果一个操作是O(nlog (n))这是什么意思?

你最喜欢的球队赢了,他们站在队伍里,队伍里有n名球员。你需要和每个玩家握手多少次,假设你要和每个玩家握手多次,多少次,玩家的号码n中有多少位数字。

注意:这将产生n * log n的10次方。

有人必须吸可卡因才能写出O(x!)吗?

你是一个富二代,你的衣柜里有很多衣服,每种衣服有x个抽屉,抽屉一个挨着一个,第一个抽屉里有一件衣服,每个抽屉里有和左边抽屉一样多的衣服,所以你有一顶帽子,两顶假发,…(x-1)条裤子,然后是x件衬衫。现在,用每个抽屉里的一件物品,你能装扮出多少种风格呢?

注意:这个例子表示一个决策树中有多少个叶结点,其中子结点数=深度,通过1 * 2 * 3 *完成。* x

log(n) means logarithmic growth. An example would be divide and conquer algorithms. If you have 1000 sorted numbers in an array ( ex. 3, 10, 34, 244, 1203 ... ) and want to search for a number in the list (find its position), you could start with checking the value of the number at index 500. If it is lower than what you seek, jump to 750. If it is higher than what you seek, jump to 250. Then you repeat the process until you find your value (and key). Every time we jump half the search space, we can cull away testing many other values since we know the number 3004 can't be above number 5000 (remember, it is a sorted list).

N log(N)表示N * log(N)

假设你有一台可以解决一定规模问题的计算机。现在想象一下,我们可以将性能提高几倍。每加倍一次,我们能解决多大的问题?

如果我们能解决一个两倍大的问题,那就是O(n)

如果我们有一个非1的乘数,那就是某种多项式复杂度。例如,如果每加倍一次,问题的规模就会增加约40%,即O(n²),而约30%则是O(n³)。

如果我们只是增加问题的规模,它是指数级的,甚至更糟。例如,如果每翻一倍意味着我们可以解决一个大1的问题,它就是O(2^n)。(这就是为什么使用合理大小的密钥实际上不可能强制使用密码密钥:128位密钥需要的处理量大约是64位密钥的16万亿倍。)

只是为了回应我上面帖子的一些评论:

Domenic - I'm on this site, and I care. Not for pedantry's sake, but because we - as programmers - typically care about precision. Using O( ) notation incorrectly in the style that some have done here renders it kind of meaningless; we may just as well say something takes n^2 units of time as O( n^2 ) under the conventions used here. Using the O( ) adds nothing. It's not just a small discrepancy between common usage and mathematical precision that I'm talking about, it's the difference between it being meaningful and it not.

我知道很多很多优秀的程序员都准确地使用这些术语。说“哦,我们是程序员,所以我们不在乎”会降低整个企业的成本。

一个接一个-嗯,不完全是,尽管我同意你的观点。对于任意大的n,它不是O(1)这是O()的定义。它只是表明O()对于有界n的适用性有限,在这里我们更愿意讨论所走的步数,而不是这个数字的界限。