我在问更多关于这对我的代码意味着什么。我能从数学上理解这些概念,只是很难理解它们在概念上的含义。例如,如果有人要对一个数据结构执行O(1)操作,我知道它必须执行的操作数量不会增长,因为有更多的项。O(n)操作意味着您将对每个元素执行一组操作。有人能帮我填一下吗?

比如O(n²)的运算会怎样? 如果一个操作是O(nlog (n))这是什么意思? 有人必须吸可卡因才能写出O(x!)吗?


当前回答

我试图用c#和JavaScript给出简单的代码示例来解释。

C#

For List<int> numbers = new List<int> {1,2,3,4,5,6,7,12,543,7};

O(1)看起来像

return numbers.First();

O(n)看起来像

int result = 0;
foreach (int num in numbers)
{
  result += num;
}
return result;

O(nlog (n))是这样的

int result = 0;
foreach (int num in numbers)
{
    int index = numbers.Count - 1;
    while (index > 1)
    {
        // yeah, stupid, but couldn't come up with something more useful :-(
        result += numbers[index];
        index /= 2;
    }
}
return result;

O(n2)是这样的

int result = 0;
foreach (int outerNum in numbers)
{
    foreach (int innerNum in numbers)
    {
        result += outerNum * innerNum;
    }
}
return result;

O(n!)看起来,嗯,太累了,想不出任何简单的东西。 但我希望你能明白大意?


JavaScript

对于const数= [1,2,3,4,5,6,7,12,543,7];

O(1)看起来像

numbers[0];

O(n)看起来像

let result = 0;
for (num of numbers){
    result += num;
}

O(nlog (n))是这样的

let result = 0;
for (num of numbers){

    let index = numbers.length - 1;
    while (index > 1){
        // yeah, stupid, but couldn't come up with something more useful :-(
        result += numbers[index];
        index = Math.floor(index/2)
    }
}

O(n2)是这样的

let result = 0;
for (outerNum of numbers){
    for (innerNum of numbers){
        result += outerNum * innerNum;
    }
}

其他回答

告诉你8年前的log(n)意味着你必须把一个长度为nlog的东西切成两半的次数,让它变成大小为n=1:p

O(nlogn)通常是排序 O(n²)通常是比较所有元素对

其中很多都很容易用非编程的东西来演示,比如洗牌。

对一副牌进行排序通过遍历整副牌找到黑桃a,然后遍历整副牌找到黑桃2,以此类推最坏情况是n^2,如果这副牌已经倒着排序了。你看了52张牌52次。

一般来说,真正糟糕的算法不一定是故意的,它们通常是对其他东西的误用,比如在同一集合上线性重复的另一个方法中调用一个线性方法。

还记得乌龟和兔子的寓言吗?

从长远来看,乌龟赢了,但从短期来看,兔子赢了。

这就像O(logN)(乌龟)vs O(N)(野兔)。

如果两种方法的大o值不同,那么它们中的一种会在N的水平上获胜,但大o值没有说明N的大小。

我是这样向我那些不懂技术的朋友描述的:

考虑多位数加法。很好的老式铅笔和纸的补充。就是你7-8岁时学的那种。给定两个三位数或四位数,你很容易就能求出它们加起来是多少。

如果我给你两个100位的数字,然后问你它们加起来是多少,即使你必须使用铅笔和纸,计算出来也会非常简单。一个聪明的孩子可以在几分钟内做这样的加法。这只需要大约100次操作。

现在,考虑多位数乘法。你可能在八九岁的时候就学会了。你(希望)做了很多重复的练习来学习它背后的机制。

Now, imagine I gave you those same two 100-digit numbers and told you to multiply them together. This would be a much, much harder task, something that would take you hours to do - and that you'd be unlikely to do without mistakes. The reason for this is that (this version of) multiplication is O(n^2); each digit in the bottom number has to be multiplied by each digit in the top number, leaving a total of about n^2 operations. In the case of the 100-digit numbers, that's 10,000 multiplications.

我试图用c#和JavaScript给出简单的代码示例来解释。

C#

For List<int> numbers = new List<int> {1,2,3,4,5,6,7,12,543,7};

O(1)看起来像

return numbers.First();

O(n)看起来像

int result = 0;
foreach (int num in numbers)
{
  result += num;
}
return result;

O(nlog (n))是这样的

int result = 0;
foreach (int num in numbers)
{
    int index = numbers.Count - 1;
    while (index > 1)
    {
        // yeah, stupid, but couldn't come up with something more useful :-(
        result += numbers[index];
        index /= 2;
    }
}
return result;

O(n2)是这样的

int result = 0;
foreach (int outerNum in numbers)
{
    foreach (int innerNum in numbers)
    {
        result += outerNum * innerNum;
    }
}
return result;

O(n!)看起来,嗯,太累了,想不出任何简单的东西。 但我希望你能明白大意?


JavaScript

对于const数= [1,2,3,4,5,6,7,12,543,7];

O(1)看起来像

numbers[0];

O(n)看起来像

let result = 0;
for (num of numbers){
    result += num;
}

O(nlog (n))是这样的

let result = 0;
for (num of numbers){

    let index = numbers.length - 1;
    while (index > 1){
        // yeah, stupid, but couldn't come up with something more useful :-(
        result += numbers[index];
        index = Math.floor(index/2)
    }
}

O(n2)是这样的

let result = 0;
for (outerNum of numbers){
    for (innerNum of numbers){
        result += outerNum * innerNum;
    }
}