我在问更多关于这对我的代码意味着什么。我能从数学上理解这些概念,只是很难理解它们在概念上的含义。例如,如果有人要对一个数据结构执行O(1)操作,我知道它必须执行的操作数量不会增长,因为有更多的项。O(n)操作意味着您将对每个元素执行一组操作。有人能帮我填一下吗?

比如O(n²)的运算会怎样? 如果一个操作是O(nlog (n))这是什么意思? 有人必须吸可卡因才能写出O(x!)吗?


当前回答

我是这样向我那些不懂技术的朋友描述的:

考虑多位数加法。很好的老式铅笔和纸的补充。就是你7-8岁时学的那种。给定两个三位数或四位数,你很容易就能求出它们加起来是多少。

如果我给你两个100位的数字,然后问你它们加起来是多少,即使你必须使用铅笔和纸,计算出来也会非常简单。一个聪明的孩子可以在几分钟内做这样的加法。这只需要大约100次操作。

现在,考虑多位数乘法。你可能在八九岁的时候就学会了。你(希望)做了很多重复的练习来学习它背后的机制。

Now, imagine I gave you those same two 100-digit numbers and told you to multiply them together. This would be a much, much harder task, something that would take you hours to do - and that you'd be unlikely to do without mistakes. The reason for this is that (this version of) multiplication is O(n^2); each digit in the bottom number has to be multiplied by each digit in the top number, leaving a total of about n^2 operations. In the case of the 100-digit numbers, that's 10,000 multiplications.

其他回答

要理解O(n log n),请记住log n意味着log-base-2 (n)。然后看看每一部分:

O(n)是,当你对集合中的每一项进行操作时。

O(log n)是指操作的次数与取2的指数相同,以得到项目的数量。例如,二分搜索必须将集合切成log n的一半。

O(nlogn)是一个组合——你在对集合中的每一项进行二分搜索。高效的排序通常是对每个项目进行一次循环,并在每个循环中进行良好的搜索,以找到放置相关项目或组的正确位置。因此是n * log n。

堂。neufeld的答案非常好,但我可能会分两部分解释它:首先,大多数算法都属于O()的粗略层次结构。然后,你可以看看每一种算法,得出那种时间复杂度的典型算法是怎么做的。

出于实际目的,似乎唯一重要的O()是:

O(1) "constant time" - the time required is independent of the size of the input. As a rough category, I would include algorithms such as hash lookups and Union-Find here, even though neither of those are actually O(1). O(log(n)) "logarithmic" - it gets slower as you get larger inputs, but once your input gets fairly large, it won't change enough to worry about. If your runtime is ok with reasonably-sized data, you can swamp it with as much additional data as you want and it'll still be ok. O(n) "linear" - the more input, the longer it takes, in an even tradeoff. Three times the input size will take roughly three times as long. O(n log(n)) "better than quadratic" - increasing the input size hurts, but it's still manageable. The algorithm is probably decent, it's just that the underlying problem is more difficult (decisions are less localized with respect to the input data) than those problems that can be solved in linear time. If your input sizes are getting up there, don't assume that you could necessarily handle twice the size without changing your architecture around (eg by moving things to overnight batch computations, or not doing things per-frame). It's ok if the input size increases a little bit, though; just watch out for multiples. O(n^2) "quadratic" - it's really only going to work up to a certain size of your input, so pay attention to how big it could get. Also, your algorithm may suck -- think hard to see if there's an O(n log(n)) algorithm that would give you what you need. Once you're here, feel very grateful for the amazing hardware we've been gifted with. Not long ago, what you are trying to do would have been impossible for all practical purposes. O(n^3) "cubic" - not qualitatively all that different from O(n^2). The same comments apply, only more so. There's a decent chance that a more clever algorithm could shave this time down to something smaller, eg O(n^2 log(n)) or O(n^2.8...), but then again, there's a good chance that it won't be worth the trouble. (You're already limited in your practical input size, so the constant factors that may be required for the more clever algorithms will probably swamp their advantages for practical cases. Also, thinking is slow; letting the computer chew on it may save you time overall.) O(2^n) "exponential" - the problem is either fundamentally computationally hard or you're being an idiot. These problems have a recognizable flavor to them. Your input sizes are capped at a fairly specific hard limit. You'll know quickly whether you fit into that limit.

就是这样。还有很多其他的可能性在这些之间(或大于O(2^n)),但它们在实践中不经常发生,它们与这些中的任何一个在性质上没有太大的不同。三次算法已经有点牵强了;我之所以把它们包括进来,是因为我经常遇到它们,值得一提(例如矩阵乘法)。

这类算法到底发生了什么?我认为你有一个很好的开始,尽管有很多例子不符合这些特征。但对于上述情况,我认为通常是这样的:

O(1) - you're only looking at most at a fixed-size chunk of your input data, and possibly none of it. Example: the maximum of a sorted list. Or your input size is bounded. Example: addition of two numbers. (Note that addition of N numbers is linear time.) O(log n) - each element of your input tells you enough to ignore a large fraction of the rest of the input. Example: when you look at an array element in binary search, its value tells you that you can ignore "half" of your array without looking at any of it. Or similarly, the element you look at gives you enough of a summary of a fraction of the remaining input that you won't need to look at it. There's nothing special about halves, though -- if you can only ignore 10% of your input at each step, it's still logarithmic. O(n) - you do some fixed amount of work per input element. (But see below.) O(n log(n)) - there are a few variants. You can divide the input into two piles (in no more than linear time), solve the problem independently on each pile, and then combine the two piles to form the final solution. The independence of the two piles is key. Example: classic recursive mergesort. Each linear-time pass over the data gets you halfway to your solution. Example: quicksort if you think in terms of the maximum distance of each element to its final sorted position at each partitioning step (and yes, I know that it's actually O(n^2) because of degenerate pivot choices. But practically speaking, it falls into my O(n log(n)) category.) O(n^2) - you have to look at every pair of input elements. Or you don't, but you think you do, and you're using the wrong algorithm. O(n^3) - um... I don't have a snappy characterization of these. It's probably one of: You're multiplying matrices You're looking at every pair of inputs but the operation you do requires looking at all of the inputs again the entire graph structure of your input is relevant O(2^n) - you need to consider every possible subset of your inputs.

这些都不严谨。尤其是线性时间算法(O(n)):我可以举出很多例子,你必须看所有的输入,然后是一半,然后是一半,等等。或者反过来——将输入对折叠在一起,然后对输出进行递归。这些不符合上面的描述,因为你不是只看一次每个输入,但它仍然是线性时间。不过,在99.2%的情况下,线性时间意味着只查看一次每个输入。

big - o符号对代码的重要意义在于,当它所操作的“事物”数量增加一倍时,它将如何扩展。这里有一个具体的例子:

Big-O       |  computations for 10 things |  computations for 100 things
----------------------------------------------------------------------
O(1)        |   1                         |     1
O(log(n))   |   3                         |     7
O(n)        |  10                         |   100
O(n log(n)) |  30                         |   700
O(n^2)      | 100                         | 10000

快速排序是O(nlog (n))而冒泡排序是O(n²)当排序10个东西时,快速排序比冒泡排序快3倍。但当对100个东西进行排序时,速度要快14倍!显然,选择最快的算法很重要。当您访问具有数百万行的数据库时,这可能意味着您的查询在0.2秒内执行,而不是花费数小时。

另一件需要考虑的事情是,糟糕的算法是摩尔定律无法帮助的事情。例如,如果你有一个O(n^3)的科学计算,它一天可以计算100个东西,处理器速度翻倍一天只能计算125个东西。然而,计算到O(n²),你每天要做1000件事情。

澄清: 实际上,Big-O并没有说不同算法在同一特定大小点上的性能比较,而是说同一算法在不同大小点上的性能比较:

                 computations     computations       computations
Big-O       |   for 10 things |  for 100 things |  for 1000 things
----------------------------------------------------------------------
O(1)        |        1        |        1        |         1
O(log(n))   |        1        |        3        |         7
O(n)        |        1        |       10        |       100
O(n log(n)) |        1        |       33        |       664
O(n^2)      |        1        |      100        |     10000

大多数Jon Bentley的书(例如Programming Pearls)都以一种非常实用的方式涵盖了这些内容。他的这次演讲中就包括了一个这样的快排分析。

虽然与这个问题并不完全相关,但Knuth提出了一个有趣的想法:在高中微积分课上教授Big-O符号,尽管我觉得这个想法相当古怪。

我会试着为一个真正的八岁男孩写一个解释,除了专业术语和数学概念。

比如O(n²)的运算会怎样?

如果你在一个聚会上,包括你在内有n个人。需要多少次握手才能让每个人都和其他人握手,因为人们可能会在某个时候忘记他们握手的人是谁。

注意:这近似于产生n(n-1)的单形,这足够接近于n²。

如果一个操作是O(nlog (n))这是什么意思?

你最喜欢的球队赢了,他们站在队伍里,队伍里有n名球员。你需要和每个玩家握手多少次,假设你要和每个玩家握手多次,多少次,玩家的号码n中有多少位数字。

注意:这将产生n * log n的10次方。

有人必须吸可卡因才能写出O(x!)吗?

你是一个富二代,你的衣柜里有很多衣服,每种衣服有x个抽屉,抽屉一个挨着一个,第一个抽屉里有一件衣服,每个抽屉里有和左边抽屉一样多的衣服,所以你有一顶帽子,两顶假发,…(x-1)条裤子,然后是x件衬衫。现在,用每个抽屉里的一件物品,你能装扮出多少种风格呢?

注意:这个例子表示一个决策树中有多少个叶结点,其中子结点数=深度,通过1 * 2 * 3 *完成。* x