我在问更多关于这对我的代码意味着什么。我能从数学上理解这些概念,只是很难理解它们在概念上的含义。例如,如果有人要对一个数据结构执行O(1)操作,我知道它必须执行的操作数量不会增长,因为有更多的项。O(n)操作意味着您将对每个元素执行一组操作。有人能帮我填一下吗?

比如O(n²)的运算会怎样? 如果一个操作是O(nlog (n))这是什么意思? 有人必须吸可卡因才能写出O(x!)吗?


当前回答

只是为了回应我上面帖子的一些评论:

Domenic - I'm on this site, and I care. Not for pedantry's sake, but because we - as programmers - typically care about precision. Using O( ) notation incorrectly in the style that some have done here renders it kind of meaningless; we may just as well say something takes n^2 units of time as O( n^2 ) under the conventions used here. Using the O( ) adds nothing. It's not just a small discrepancy between common usage and mathematical precision that I'm talking about, it's the difference between it being meaningful and it not.

我知道很多很多优秀的程序员都准确地使用这些术语。说“哦,我们是程序员,所以我们不在乎”会降低整个企业的成本。

一个接一个-嗯,不完全是,尽管我同意你的观点。对于任意大的n,它不是O(1)这是O()的定义。它只是表明O()对于有界n的适用性有限,在这里我们更愿意讨论所走的步数,而不是这个数字的界限。

其他回答

有一件事由于某种原因还没有被提及:

当你看到像O(2^n)或O(n^3)这样的算法时,这通常意味着你将不得不接受一个不完美的问题答案,以获得可接受的性能。

在处理优化问题时,像这样的正确解决方案很常见。在合理的时间内给出一个近乎正确的答案,总比在机器腐烂成灰尘很久之后才给出一个正确答案要好。

以国际象棋为例:我不知道正确的解决方案是什么,但它可能是O(n^50)或更糟。从理论上讲,任何计算机都不可能真正计算出正确答案——即使你用宇宙中的每个粒子作为计算元素,在宇宙生命周期内尽可能短的时间内执行一项操作,你仍然会剩下很多零。(量子计算机能否解决这个问题是另一回事。)

log(n) means logarithmic growth. An example would be divide and conquer algorithms. If you have 1000 sorted numbers in an array ( ex. 3, 10, 34, 244, 1203 ... ) and want to search for a number in the list (find its position), you could start with checking the value of the number at index 500. If it is lower than what you seek, jump to 750. If it is higher than what you seek, jump to 250. Then you repeat the process until you find your value (and key). Every time we jump half the search space, we can cull away testing many other values since we know the number 3004 can't be above number 5000 (remember, it is a sorted list).

N log(N)表示N * log(N)

把它想象成垂直堆叠乐高积木(n),然后跳过它们。

O(1)表示在每一步,你什么都不做。高度保持不变。

O(n)表示在每一步,你堆叠c块,其中c1是常数。

O(n²)表示在每一步,你堆叠c2 x n个块,其中c2是一个常数,n是堆叠块的数量。

O(nlogn)表示在每一步,你堆叠c3 x n x logn个块,其中c3是一个常数,n是堆叠块的数量。

这可能太数学化了,但这是我的尝试。(我是数学家。)

如果某个东西是O(f(n)),那么它在n个元素上的运行时间将等于A f(n) + B(以时钟周期或CPU操作为单位)。理解这些常量A和B是非常关键的,它们来自特定的实现。B本质上代表你的操作的“常量开销”,例如你所做的一些预处理不依赖于集合的大小。A表示实际项目处理算法的速度。

关键在于,你可以使用大O符号来计算某物的可伸缩性。所以这些常数并不重要:如果你想弄清楚如何从10个项目扩展到10000个项目,谁会关心开销常数B呢?类似地,其他问题(见下文)肯定会超过乘法常数A的重要性。

So the real deal is f(n). If f grows not at all with n, e.g. f(n) = 1, then you'll scale fantastically---your running time will always just be A + B. If f grows linearly with n, i.e. f(n) = n, your running time will scale pretty much as best as can be expected---if your users are waiting 10 ns for 10 elements, they'll wait 10000 ns for 10000 elements (ignoring the additive constant). But if it grows faster, like n2, then you're in trouble; things will start slowing down way too much when you get larger collections. f(n) = n log(n) is a good compromise, usually: your operation can't be so simple as to give linear scaling, but you've managed to cut things down such that it'll scale much better than f(n) = n2.

实际上,这里有一些很好的例子:

O(1): retrieving an element from an array. We know exactly where it is in memory, so we just go get it. It doesn't matter if the collection has 10 items or 10000; it's still at index (say) 3, so we just jump to location 3 in memory. O(n): retrieving an element from a linked list. Here, A = 0.5, because on average you''ll have to go through 1/2 of the linked list before you find the element you're looking for. O(n2): various "dumb" sorting algorithms. Because generally their strategy involves, for each element (n), you look at all the other elements (so times another n, giving n2), then position yourself in the right place. O(n log(n)): various "smart" sorting algorithms. It turns out that you only need to look at, say, 10 elements in a 1010-element collection to intelligently sort yourself relative to everyone else in the collection. Because everyone else is also going to look at 10 elements, and the emergent behavior is orchestrated just right so that this is enough to produce a sorted list. O(n!): an algorithm that "tries everything," since there are (proportional to) n! possible combinations of n elements that might solve a given problem. So it just loops through all such combinations, tries them, then stops whenever it succeeds.

有人必须吸可卡因才能写出O(x!)吗?

不用,用Prolog就行。如果您在Prolog中编写排序算法,只需描述每个元素都应该比前一个元素大,并让回溯为您进行排序,那么它将是O(x!)也称为“排列排序”。