我在问更多关于这对我的代码意味着什么。我能从数学上理解这些概念,只是很难理解它们在概念上的含义。例如,如果有人要对一个数据结构执行O(1)操作,我知道它必须执行的操作数量不会增长,因为有更多的项。O(n)操作意味着您将对每个元素执行一组操作。有人能帮我填一下吗?

比如O(n²)的运算会怎样? 如果一个操作是O(nlog (n))这是什么意思? 有人必须吸可卡因才能写出O(x!)吗?


当前回答

还记得乌龟和兔子的寓言吗?

从长远来看,乌龟赢了,但从短期来看,兔子赢了。

这就像O(logN)(乌龟)vs O(N)(野兔)。

如果两种方法的大o值不同,那么它们中的一种会在N的水平上获胜,但大o值没有说明N的大小。

其他回答

我会试着为一个真正的八岁男孩写一个解释,除了专业术语和数学概念。

比如O(n²)的运算会怎样?

如果你在一个聚会上,包括你在内有n个人。需要多少次握手才能让每个人都和其他人握手,因为人们可能会在某个时候忘记他们握手的人是谁。

注意:这近似于产生n(n-1)的单形,这足够接近于n²。

如果一个操作是O(nlog (n))这是什么意思?

你最喜欢的球队赢了,他们站在队伍里,队伍里有n名球员。你需要和每个玩家握手多少次,假设你要和每个玩家握手多次,多少次,玩家的号码n中有多少位数字。

注意:这将产生n * log n的10次方。

有人必须吸可卡因才能写出O(x!)吗?

你是一个富二代,你的衣柜里有很多衣服,每种衣服有x个抽屉,抽屉一个挨着一个,第一个抽屉里有一件衣服,每个抽屉里有和左边抽屉一样多的衣服,所以你有一顶帽子,两顶假发,…(x-1)条裤子,然后是x件衬衫。现在,用每个抽屉里的一件物品,你能装扮出多少种风格呢?

注意:这个例子表示一个决策树中有多少个叶结点,其中子结点数=深度,通过1 * 2 * 3 *完成。* x

要理解O(n log n),请记住log n意味着log-base-2 (n)。然后看看每一部分:

O(n)是,当你对集合中的每一项进行操作时。

O(log n)是指操作的次数与取2的指数相同,以得到项目的数量。例如,二分搜索必须将集合切成log n的一半。

O(nlogn)是一个组合——你在对集合中的每一项进行二分搜索。高效的排序通常是对每个项目进行一次循环,并在每个循环中进行良好的搜索,以找到放置相关项目或组的正确位置。因此是n * log n。

big - o符号对代码的重要意义在于,当它所操作的“事物”数量增加一倍时,它将如何扩展。这里有一个具体的例子:

Big-O       |  computations for 10 things |  computations for 100 things
----------------------------------------------------------------------
O(1)        |   1                         |     1
O(log(n))   |   3                         |     7
O(n)        |  10                         |   100
O(n log(n)) |  30                         |   700
O(n^2)      | 100                         | 10000

快速排序是O(nlog (n))而冒泡排序是O(n²)当排序10个东西时,快速排序比冒泡排序快3倍。但当对100个东西进行排序时,速度要快14倍!显然,选择最快的算法很重要。当您访问具有数百万行的数据库时,这可能意味着您的查询在0.2秒内执行,而不是花费数小时。

另一件需要考虑的事情是,糟糕的算法是摩尔定律无法帮助的事情。例如,如果你有一个O(n^3)的科学计算,它一天可以计算100个东西,处理器速度翻倍一天只能计算125个东西。然而,计算到O(n²),你每天要做1000件事情。

澄清: 实际上,Big-O并没有说不同算法在同一特定大小点上的性能比较,而是说同一算法在不同大小点上的性能比较:

                 computations     computations       computations
Big-O       |   for 10 things |  for 100 things |  for 1000 things
----------------------------------------------------------------------
O(1)        |        1        |        1        |         1
O(log(n))   |        1        |        3        |         7
O(n)        |        1        |       10        |       100
O(n log(n)) |        1        |       33        |       664
O(n^2)      |        1        |      100        |     10000

为了对被问到的问题保持真诚,我会用回答8岁孩子的方式来回答这个问题

假设一个冰淇淋小贩准备了许多不同形状的冰淇淋(比如N个),按顺序排列。 你想吃中间的冰淇淋

情况1:只有吃完所有比它小的冰淇淋,你才能吃冰淇淋 你将不得不吃掉一半准备好的冰淇淋(输入)。答案直接取决于输入的大小 解是o(N)阶的

情况2:—你可以直接吃中间的冰淇淋

解是O(1)

情况3:只有当你吃完所有比它小的冰淇淋时,你才能吃冰淇淋,每次你吃冰淇淋时,你都允许另一个孩子(每次都是新孩子)吃掉他所有的冰淇淋 总时间为N + N + N.......(N/2)次 溶液是O(N2)

我喜欢don neufeld的答案,但我想我可以加上O(nlog n)

使用简单分治策略的算法可能是O(log n)最简单的例子是在排序列表中查找某个东西。你不需要从头开始扫描。你走到中间,你决定是向后走还是向前走,跳到中途,直到你找到你要找的东西。

如果您查看快速排序或归并排序算法,您将看到它们都采用将列表分成两半,对每一半排序(使用相同的算法,递归地),然后重新组合两半的方法。这种递归分治策略是O(nlog n)

If you think about it carefully, you'll see that quicksort does an O(n) partitioning algorithm on the whole n items, then an O(n) partitioning twice on n/2 items, then 4 times on n/4 items, etc... until you get to an n partitions on 1 item (which is degenerate). The number of times you divide n in half to get to 1 is approximately log n, and each step is O(n), so recursive divide and conquer is O(n log n). Mergesort builds the other way, starting with n recombinations of 1 item, and finishing with 1 recombination of n items, where the recombination of two sorted lists is O(n).

至于抽大麻写一个O(n!)算法,除非你别无选择。上面提到的旅行推销员问题被认为是这样一个问题。