我在问更多关于这对我的代码意味着什么。我能从数学上理解这些概念,只是很难理解它们在概念上的含义。例如,如果有人要对一个数据结构执行O(1)操作,我知道它必须执行的操作数量不会增长,因为有更多的项。O(n)操作意味着您将对每个元素执行一组操作。有人能帮我填一下吗?
比如O(n²)的运算会怎样? 如果一个操作是O(nlog (n))这是什么意思? 有人必须吸可卡因才能写出O(x!)吗?
我在问更多关于这对我的代码意味着什么。我能从数学上理解这些概念,只是很难理解它们在概念上的含义。例如,如果有人要对一个数据结构执行O(1)操作,我知道它必须执行的操作数量不会增长,因为有更多的项。O(n)操作意味着您将对每个元素执行一组操作。有人能帮我填一下吗?
比如O(n²)的运算会怎样? 如果一个操作是O(nlog (n))这是什么意思? 有人必须吸可卡因才能写出O(x!)吗?
当前回答
为了对被问到的问题保持真诚,我会用回答8岁孩子的方式来回答这个问题
假设一个冰淇淋小贩准备了许多不同形状的冰淇淋(比如N个),按顺序排列。 你想吃中间的冰淇淋
情况1:只有吃完所有比它小的冰淇淋,你才能吃冰淇淋 你将不得不吃掉一半准备好的冰淇淋(输入)。答案直接取决于输入的大小 解是o(N)阶的
情况2:—你可以直接吃中间的冰淇淋
解是O(1)
情况3:只有当你吃完所有比它小的冰淇淋时,你才能吃冰淇淋,每次你吃冰淇淋时,你都允许另一个孩子(每次都是新孩子)吃掉他所有的冰淇淋 总时间为N + N + N.......(N/2)次 溶液是O(N2)
其他回答
把它想象成垂直堆叠乐高积木(n),然后跳过它们。
O(1)表示在每一步,你什么都不做。高度保持不变。
O(n)表示在每一步,你堆叠c块,其中c1是常数。
O(n²)表示在每一步,你堆叠c2 x n个块,其中c2是一个常数,n是堆叠块的数量。
O(nlogn)表示在每一步,你堆叠c3 x n x logn个块,其中c3是一个常数,n是堆叠块的数量。
为了对被问到的问题保持真诚,我会用回答8岁孩子的方式来回答这个问题
假设一个冰淇淋小贩准备了许多不同形状的冰淇淋(比如N个),按顺序排列。 你想吃中间的冰淇淋
情况1:只有吃完所有比它小的冰淇淋,你才能吃冰淇淋 你将不得不吃掉一半准备好的冰淇淋(输入)。答案直接取决于输入的大小 解是o(N)阶的
情况2:—你可以直接吃中间的冰淇淋
解是O(1)
情况3:只有当你吃完所有比它小的冰淇淋时,你才能吃冰淇淋,每次你吃冰淇淋时,你都允许另一个孩子(每次都是新孩子)吃掉他所有的冰淇淋 总时间为N + N + N.......(N/2)次 溶液是O(N2)
一种思考的方式是:
O(N²)意味着对于每个元素,你都要对其他元素做一些事情,比如比较它们。冒泡排序就是一个例子。
O(N log N)意味着对于每个元素,你只需要看log N个元素。这通常是因为你知道一些元素,可以让你做出有效的选择。最有效的排序就是一个例子,比如归并排序。
O(N!)表示对N个元素的所有可能排列进行处理。旅行推销员就是一个例子,那里有N!访问节点的方法,暴力解决方案是查看每一种可能的排列的总代价,以找到最优的一个。
big - o符号对代码的重要意义在于,当它所操作的“事物”数量增加一倍时,它将如何扩展。这里有一个具体的例子:
Big-O | computations for 10 things | computations for 100 things ---------------------------------------------------------------------- O(1) | 1 | 1 O(log(n)) | 3 | 7 O(n) | 10 | 100 O(n log(n)) | 30 | 700 O(n^2) | 100 | 10000
快速排序是O(nlog (n))而冒泡排序是O(n²)当排序10个东西时,快速排序比冒泡排序快3倍。但当对100个东西进行排序时,速度要快14倍!显然,选择最快的算法很重要。当您访问具有数百万行的数据库时,这可能意味着您的查询在0.2秒内执行,而不是花费数小时。
另一件需要考虑的事情是,糟糕的算法是摩尔定律无法帮助的事情。例如,如果你有一个O(n^3)的科学计算,它一天可以计算100个东西,处理器速度翻倍一天只能计算125个东西。然而,计算到O(n²),你每天要做1000件事情。
澄清: 实际上,Big-O并没有说不同算法在同一特定大小点上的性能比较,而是说同一算法在不同大小点上的性能比较:
computations computations computations Big-O | for 10 things | for 100 things | for 1000 things ---------------------------------------------------------------------- O(1) | 1 | 1 | 1 O(log(n)) | 1 | 3 | 7 O(n) | 1 | 10 | 100 O(n log(n)) | 1 | 33 | 664 O(n^2) | 1 | 100 | 10000
我是这样想的,你有一个任务,要清理一个由坏人V引起的问题,他选择了N,你必须估计出当他增加N时,你需要多长时间来完成你的问题。
O(1) ->增加N并没有什么不同
O(log(N)) ->每次V翻倍N,你必须花费额外的时间T来完成任务。V又翻倍了N,你花了同样多的钱。
O(N) -> V N每翻一倍,花费的时间就翻一倍。
O(N²)- V N每翻一倍,花费的时间就增加4倍。(这不公平!!)
O(nlog (N)) -, V每翻一倍N,你就花两倍的时间,再多一点。
这些是算法的边界;计算机科学家想要描述大n值需要多长时间(当你分解密码学中使用的数字时,这很重要——如果计算机速度提高了10倍,你需要多使用多少位才能确保它们仍然需要100年而不是1年才能破解你的加密?)
有些界限可能有奇怪的表达式,如果它对涉及的人有影响的话。我在Knuth的《计算机编程艺术》中见过类似于O(nlog (N) log(log(N))的算法。(我一时想不起是哪一个了)