我在问更多关于这对我的代码意味着什么。我能从数学上理解这些概念,只是很难理解它们在概念上的含义。例如,如果有人要对一个数据结构执行O(1)操作,我知道它必须执行的操作数量不会增长,因为有更多的项。O(n)操作意味着您将对每个元素执行一组操作。有人能帮我填一下吗?

比如O(n²)的运算会怎样? 如果一个操作是O(nlog (n))这是什么意思? 有人必须吸可卡因才能写出O(x!)吗?


当前回答

为了对被问到的问题保持真诚,我会用回答8岁孩子的方式来回答这个问题

假设一个冰淇淋小贩准备了许多不同形状的冰淇淋(比如N个),按顺序排列。 你想吃中间的冰淇淋

情况1:只有吃完所有比它小的冰淇淋,你才能吃冰淇淋 你将不得不吃掉一半准备好的冰淇淋(输入)。答案直接取决于输入的大小 解是o(N)阶的

情况2:—你可以直接吃中间的冰淇淋

解是O(1)

情况3:只有当你吃完所有比它小的冰淇淋时,你才能吃冰淇淋,每次你吃冰淇淋时,你都允许另一个孩子(每次都是新孩子)吃掉他所有的冰淇淋 总时间为N + N + N.......(N/2)次 溶液是O(N2)

其他回答

你可能会发现把它形象化很有用:

同样,在LogY/LogX尺度上,函数n1/2, n, n2都看起来像直线,而在LogY/X尺度上,2n, en, 10n是直线和n!是线性的(看起来像n log n)

我会试着为一个真正的八岁男孩写一个解释,除了专业术语和数学概念。

比如O(n²)的运算会怎样?

如果你在一个聚会上,包括你在内有n个人。需要多少次握手才能让每个人都和其他人握手,因为人们可能会在某个时候忘记他们握手的人是谁。

注意:这近似于产生n(n-1)的单形,这足够接近于n²。

如果一个操作是O(nlog (n))这是什么意思?

你最喜欢的球队赢了,他们站在队伍里,队伍里有n名球员。你需要和每个玩家握手多少次,假设你要和每个玩家握手多次,多少次,玩家的号码n中有多少位数字。

注意:这将产生n * log n的10次方。

有人必须吸可卡因才能写出O(x!)吗?

你是一个富二代,你的衣柜里有很多衣服,每种衣服有x个抽屉,抽屉一个挨着一个,第一个抽屉里有一件衣服,每个抽屉里有和左边抽屉一样多的衣服,所以你有一顶帽子,两顶假发,…(x-1)条裤子,然后是x件衬衫。现在,用每个抽屉里的一件物品,你能装扮出多少种风格呢?

注意:这个例子表示一个决策树中有多少个叶结点,其中子结点数=深度,通过1 * 2 * 3 *完成。* x

其中很多都很容易用非编程的东西来演示,比如洗牌。

对一副牌进行排序通过遍历整副牌找到黑桃a,然后遍历整副牌找到黑桃2,以此类推最坏情况是n^2,如果这副牌已经倒着排序了。你看了52张牌52次。

一般来说,真正糟糕的算法不一定是故意的,它们通常是对其他东西的误用,比如在同一集合上线性重复的另一个方法中调用一个线性方法。

只是为了回应我上面帖子的一些评论:

Domenic - I'm on this site, and I care. Not for pedantry's sake, but because we - as programmers - typically care about precision. Using O( ) notation incorrectly in the style that some have done here renders it kind of meaningless; we may just as well say something takes n^2 units of time as O( n^2 ) under the conventions used here. Using the O( ) adds nothing. It's not just a small discrepancy between common usage and mathematical precision that I'm talking about, it's the difference between it being meaningful and it not.

我知道很多很多优秀的程序员都准确地使用这些术语。说“哦,我们是程序员,所以我们不在乎”会降低整个企业的成本。

一个接一个-嗯,不完全是,尽管我同意你的观点。对于任意大的n,它不是O(1)这是O()的定义。它只是表明O()对于有界n的适用性有限,在这里我们更愿意讨论所走的步数,而不是这个数字的界限。

我是这样向我那些不懂技术的朋友描述的:

考虑多位数加法。很好的老式铅笔和纸的补充。就是你7-8岁时学的那种。给定两个三位数或四位数,你很容易就能求出它们加起来是多少。

如果我给你两个100位的数字,然后问你它们加起来是多少,即使你必须使用铅笔和纸,计算出来也会非常简单。一个聪明的孩子可以在几分钟内做这样的加法。这只需要大约100次操作。

现在,考虑多位数乘法。你可能在八九岁的时候就学会了。你(希望)做了很多重复的练习来学习它背后的机制。

Now, imagine I gave you those same two 100-digit numbers and told you to multiply them together. This would be a much, much harder task, something that would take you hours to do - and that you'd be unlikely to do without mistakes. The reason for this is that (this version of) multiplication is O(n^2); each digit in the bottom number has to be multiplied by each digit in the top number, leaving a total of about n^2 operations. In the case of the 100-digit numbers, that's 10,000 multiplications.