我在问更多关于这对我的代码意味着什么。我能从数学上理解这些概念,只是很难理解它们在概念上的含义。例如,如果有人要对一个数据结构执行O(1)操作,我知道它必须执行的操作数量不会增长,因为有更多的项。O(n)操作意味着您将对每个元素执行一组操作。有人能帮我填一下吗?

比如O(n²)的运算会怎样? 如果一个操作是O(nlog (n))这是什么意思? 有人必须吸可卡因才能写出O(x!)吗?


当前回答

假设你有一台可以解决一定规模问题的计算机。现在想象一下,我们可以将性能提高几倍。每加倍一次,我们能解决多大的问题?

如果我们能解决一个两倍大的问题,那就是O(n)

如果我们有一个非1的乘数,那就是某种多项式复杂度。例如,如果每加倍一次,问题的规模就会增加约40%,即O(n²),而约30%则是O(n³)。

如果我们只是增加问题的规模,它是指数级的,甚至更糟。例如,如果每翻一倍意味着我们可以解决一个大1的问题,它就是O(2^n)。(这就是为什么使用合理大小的密钥实际上不可能强制使用密码密钥:128位密钥需要的处理量大约是64位密钥的16万亿倍。)

其他回答

不,O(n)算法并不意味着它将对每个元素执行操作。大o符号给了你一种方法来谈论你的算法的“速度”独立于你的实际机器。

O(n)表示算法花费的时间随着输入的增加而线性增长。O(n²)意味着你的算法花费的时间是你输入的平方。等等。

我会试着为一个真正的八岁男孩写一个解释,除了专业术语和数学概念。

比如O(n²)的运算会怎样?

如果你在一个聚会上,包括你在内有n个人。需要多少次握手才能让每个人都和其他人握手,因为人们可能会在某个时候忘记他们握手的人是谁。

注意:这近似于产生n(n-1)的单形,这足够接近于n²。

如果一个操作是O(nlog (n))这是什么意思?

你最喜欢的球队赢了,他们站在队伍里,队伍里有n名球员。你需要和每个玩家握手多少次,假设你要和每个玩家握手多次,多少次,玩家的号码n中有多少位数字。

注意:这将产生n * log n的10次方。

有人必须吸可卡因才能写出O(x!)吗?

你是一个富二代,你的衣柜里有很多衣服,每种衣服有x个抽屉,抽屉一个挨着一个,第一个抽屉里有一件衣服,每个抽屉里有和左边抽屉一样多的衣服,所以你有一顶帽子,两顶假发,…(x-1)条裤子,然后是x件衬衫。现在,用每个抽屉里的一件物品,你能装扮出多少种风格呢?

注意:这个例子表示一个决策树中有多少个叶结点,其中子结点数=深度,通过1 * 2 * 3 *完成。* x

我是这样向我那些不懂技术的朋友描述的:

考虑多位数加法。很好的老式铅笔和纸的补充。就是你7-8岁时学的那种。给定两个三位数或四位数,你很容易就能求出它们加起来是多少。

如果我给你两个100位的数字,然后问你它们加起来是多少,即使你必须使用铅笔和纸,计算出来也会非常简单。一个聪明的孩子可以在几分钟内做这样的加法。这只需要大约100次操作。

现在,考虑多位数乘法。你可能在八九岁的时候就学会了。你(希望)做了很多重复的练习来学习它背后的机制。

Now, imagine I gave you those same two 100-digit numbers and told you to multiply them together. This would be a much, much harder task, something that would take you hours to do - and that you'd be unlikely to do without mistakes. The reason for this is that (this version of) multiplication is O(n^2); each digit in the bottom number has to be multiplied by each digit in the top number, leaving a total of about n^2 operations. In the case of the 100-digit numbers, that's 10,000 multiplications.

我试图用c#和JavaScript给出简单的代码示例来解释。

C#

For List<int> numbers = new List<int> {1,2,3,4,5,6,7,12,543,7};

O(1)看起来像

return numbers.First();

O(n)看起来像

int result = 0;
foreach (int num in numbers)
{
  result += num;
}
return result;

O(nlog (n))是这样的

int result = 0;
foreach (int num in numbers)
{
    int index = numbers.Count - 1;
    while (index > 1)
    {
        // yeah, stupid, but couldn't come up with something more useful :-(
        result += numbers[index];
        index /= 2;
    }
}
return result;

O(n2)是这样的

int result = 0;
foreach (int outerNum in numbers)
{
    foreach (int innerNum in numbers)
    {
        result += outerNum * innerNum;
    }
}
return result;

O(n!)看起来,嗯,太累了,想不出任何简单的东西。 但我希望你能明白大意?


JavaScript

对于const数= [1,2,3,4,5,6,7,12,543,7];

O(1)看起来像

numbers[0];

O(n)看起来像

let result = 0;
for (num of numbers){
    result += num;
}

O(nlog (n))是这样的

let result = 0;
for (num of numbers){

    let index = numbers.length - 1;
    while (index > 1){
        // yeah, stupid, but couldn't come up with something more useful :-(
        result += numbers[index];
        index = Math.floor(index/2)
    }
}

O(n2)是这样的

let result = 0;
for (outerNum of numbers){
    for (innerNum of numbers){
        result += outerNum * innerNum;
    }
}

你可能会发现把它形象化很有用:

同样,在LogY/LogX尺度上,函数n1/2, n, n2都看起来像直线,而在LogY/X尺度上,2n, en, 10n是直线和n!是线性的(看起来像n log n)