我在问更多关于这对我的代码意味着什么。我能从数学上理解这些概念,只是很难理解它们在概念上的含义。例如,如果有人要对一个数据结构执行O(1)操作,我知道它必须执行的操作数量不会增长,因为有更多的项。O(n)操作意味着您将对每个元素执行一组操作。有人能帮我填一下吗?
比如O(n²)的运算会怎样? 如果一个操作是O(nlog (n))这是什么意思? 有人必须吸可卡因才能写出O(x!)吗?
我在问更多关于这对我的代码意味着什么。我能从数学上理解这些概念,只是很难理解它们在概念上的含义。例如,如果有人要对一个数据结构执行O(1)操作,我知道它必须执行的操作数量不会增长,因为有更多的项。O(n)操作意味着您将对每个元素执行一组操作。有人能帮我填一下吗?
比如O(n²)的运算会怎样? 如果一个操作是O(nlog (n))这是什么意思? 有人必须吸可卡因才能写出O(x!)吗?
当前回答
一种思考的方式是:
O(N²)意味着对于每个元素,你都要对其他元素做一些事情,比如比较它们。冒泡排序就是一个例子。
O(N log N)意味着对于每个元素,你只需要看log N个元素。这通常是因为你知道一些元素,可以让你做出有效的选择。最有效的排序就是一个例子,比如归并排序。
O(N!)表示对N个元素的所有可能排列进行处理。旅行推销员就是一个例子,那里有N!访问节点的方法,暴力解决方案是查看每一种可能的排列的总代价,以找到最优的一个。
其他回答
其中很多都很容易用非编程的东西来演示,比如洗牌。
对一副牌进行排序通过遍历整副牌找到黑桃a,然后遍历整副牌找到黑桃2,以此类推最坏情况是n^2,如果这副牌已经倒着排序了。你看了52张牌52次。
一般来说,真正糟糕的算法不一定是故意的,它们通常是对其他东西的误用,比如在同一集合上线性重复的另一个方法中调用一个线性方法。
我喜欢don neufeld的答案,但我想我可以加上O(nlog n)
使用简单分治策略的算法可能是O(log n)最简单的例子是在排序列表中查找某个东西。你不需要从头开始扫描。你走到中间,你决定是向后走还是向前走,跳到中途,直到你找到你要找的东西。
如果您查看快速排序或归并排序算法,您将看到它们都采用将列表分成两半,对每一半排序(使用相同的算法,递归地),然后重新组合两半的方法。这种递归分治策略是O(nlog n)
If you think about it carefully, you'll see that quicksort does an O(n) partitioning algorithm on the whole n items, then an O(n) partitioning twice on n/2 items, then 4 times on n/4 items, etc... until you get to an n partitions on 1 item (which is degenerate). The number of times you divide n in half to get to 1 is approximately log n, and each step is O(n), so recursive divide and conquer is O(n log n). Mergesort builds the other way, starting with n recombinations of 1 item, and finishing with 1 recombination of n items, where the recombination of two sorted lists is O(n).
至于抽大麻写一个O(n!)算法,除非你别无选择。上面提到的旅行推销员问题被认为是这样一个问题。
把它想象成垂直堆叠乐高积木(n),然后跳过它们。
O(1)表示在每一步,你什么都不做。高度保持不变。
O(n)表示在每一步,你堆叠c块,其中c1是常数。
O(n²)表示在每一步,你堆叠c2 x n个块,其中c2是一个常数,n是堆叠块的数量。
O(nlogn)表示在每一步,你堆叠c3 x n x logn个块,其中c3是一个常数,n是堆叠块的数量。
log(n) means logarithmic growth. An example would be divide and conquer algorithms. If you have 1000 sorted numbers in an array ( ex. 3, 10, 34, 244, 1203 ... ) and want to search for a number in the list (find its position), you could start with checking the value of the number at index 500. If it is lower than what you seek, jump to 750. If it is higher than what you seek, jump to 250. Then you repeat the process until you find your value (and key). Every time we jump half the search space, we can cull away testing many other values since we know the number 3004 can't be above number 5000 (remember, it is a sorted list).
N log(N)表示N * log(N)
有人必须吸可卡因才能写出O(x!)吗?
不用,用Prolog就行。如果您在Prolog中编写排序算法,只需描述每个元素都应该比前一个元素大,并让回溯为您进行排序,那么它将是O(x!)也称为“排列排序”。