在Python中__slots__的目的是什么——特别是当我想要使用它时,什么时候不使用它?
当前回答
引用雅各布·海伦的话:
The proper use of __slots__ is to save space in objects. Instead of having a dynamic dict that allows adding attributes to objects at anytime, there is a static structure which does not allow additions after creation. [This use of __slots__ eliminates the overhead of one dict for every object.] While this is sometimes a useful optimization, it would be completely unnecessary if the Python interpreter was dynamic enough so that it would only require the dict when there actually were additions to the object. Unfortunately there is a side effect to slots. They change the behavior of the objects that have slots in a way that can be abused by control freaks and static typing weenies. This is bad, because the control freaks should be abusing the metaclasses and the static typing weenies should be abusing decorators, since in Python, there should be only one obvious way of doing something. Making CPython smart enough to handle saving space without __slots__ is a major undertaking, which is probably why it is not on the list of changes for P3k (yet).
其他回答
如果你要实例化很多(成百上千)同一个类的对象,你会想要使用__slots__。__slots__仅作为内存优化工具存在。
强烈建议使用__slots__来约束属性创建。
使用__slots__ pickle对象将无法使用默认的(最古老的)pickle协议;有必要指定一个更高的版本。
python的其他一些自省特性也可能受到不利影响。
引用雅各布·海伦的话:
The proper use of __slots__ is to save space in objects. Instead of having a dynamic dict that allows adding attributes to objects at anytime, there is a static structure which does not allow additions after creation. [This use of __slots__ eliminates the overhead of one dict for every object.] While this is sometimes a useful optimization, it would be completely unnecessary if the Python interpreter was dynamic enough so that it would only require the dict when there actually were additions to the object. Unfortunately there is a side effect to slots. They change the behavior of the objects that have slots in a way that can be abused by control freaks and static typing weenies. This is bad, because the control freaks should be abusing the metaclasses and the static typing weenies should be abusing decorators, since in Python, there should be only one obvious way of doing something. Making CPython smart enough to handle saving space without __slots__ is a major undertaking, which is probably why it is not on the list of changes for P3k (yet).
除了在这里的其他答案中描述的无数优点-内存意识的紧凑实例,比更易变的__dict__承载实例更不容易出错等等-我发现使用__slots__提供了更清晰的类声明,因为类的实例变量显式地公开。
为了解决__slots__声明的继承问题,我使用了这个元类:
import abc
class Slotted(abc.ABCMeta):
""" A metaclass that ensures its classes, and all subclasses,
will be slotted types.
"""
def __new__(metacls, name, bases, attributes, **kwargs):
""" Override for `abc.ABCMeta.__new__(…)` setting up a
derived slotted class.
"""
if '__slots__' not in attributes:
attributes['__slots__'] = tuple()
return super(Slotted, metacls).__new__(metacls, name, # type: ignore
bases,
attributes,
**kwargs)
…如果在继承塔中声明为基类的元类,则确保从该基类派生的所有内容都将正确继承__slots__属性,即使中间类没有声明任何属性。像这样:
# note no __slots__ declaration necessary with the metaclass:
class Base(metaclass=Slotted):
pass
# class is properly slotted, no __dict__:
class Derived(Base):
__slots__ = 'slot', 'another_slot'
# class is also properly slotted:
class FurtherDerived(Derived):
pass
Another somewhat obscure use of __slots__ is to add attributes to an object proxy from the ProxyTypes package, formerly part of the PEAK project. Its ObjectWrapper allows you to proxy another object, but intercept all interactions with the proxied object. It is not very commonly used (and no Python 3 support), but we have used it to implement a thread-safe blocking wrapper around an async implementation based on tornado that bounces all access to the proxied object through the ioloop, using thread-safe concurrent.Future objects to synchronise and return results.
默认情况下,对代理对象的任何属性访问都将为您提供代理对象的结果。如果你需要在代理对象上添加一个属性,可以使用__slots__。
from peak.util.proxies import ObjectWrapper
class Original(object):
def __init__(self):
self.name = 'The Original'
class ProxyOriginal(ObjectWrapper):
__slots__ = ['proxy_name']
def __init__(self, subject, proxy_name):
# proxy_info attributed added directly to the
# Original instance, not the ProxyOriginal instance
self.proxy_info = 'You are proxied by {}'.format(proxy_name)
# proxy_name added to ProxyOriginal instance, since it is
# defined in __slots__
self.proxy_name = proxy_name
super(ProxyOriginal, self).__init__(subject)
if __name__ == "__main__":
original = Original()
proxy = ProxyOriginal(original, 'Proxy Overlord')
# Both statements print "The Original"
print "original.name: ", original.name
print "proxy.name: ", proxy.name
# Both statements below print
# "You are proxied by Proxy Overlord", since the ProxyOriginal
# __init__ sets it to the original object
print "original.proxy_info: ", original.proxy_info
print "proxy.proxy_info: ", proxy.proxy_info
# prints "Proxy Overlord"
print "proxy.proxy_name: ", proxy.proxy_name
# Raises AttributeError since proxy_name is only set on
# the proxy object
print "original.proxy_name: ", proxy.proxy_name
除了其他答案,这里还有一个使用__slots__的例子:
>>> class Test(object): #Must be new-style class!
... __slots__ = ['x', 'y']
...
>>> pt = Test()
>>> dir(pt)
['__class__', '__delattr__', '__doc__', '__getattribute__', '__hash__',
'__init__', '__module__', '__new__', '__reduce__', '__reduce_ex__',
'__repr__', '__setattr__', '__slots__', '__str__', 'x', 'y']
>>> pt.x
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: x
>>> pt.x = 1
>>> pt.x
1
>>> pt.z = 2
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'Test' object has no attribute 'z'
>>> pt.__dict__
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'Test' object has no attribute '__dict__'
>>> pt.__slots__
['x', 'y']
因此,要实现__slots__,它只需要额外的一行(并使您的类成为一个新样式的类,如果它还不是的话)。通过这种方式,您可以将这些类的内存占用减少5倍,代价是必须编写自定义pickle代码(如果需要的话)。
推荐文章
- Python glob多个文件类型
- 如何可靠地打开与当前运行脚本在同一目录下的文件
- Python csv字符串到数组
- 如何将类标记为已弃用?
- 如何在Python中进行热编码?
- 如何嵌入HTML到IPython输出?
- 在Python生成器上使用“send”函数的目的是什么?
- 是否可以将已编译的.pyc文件反编译为.py文件?
- Django模型表单对象的自动创建日期
- 在Python中包装长行
- 如何计算两个时间串之间的时间间隔
- 我如何才能找到一个Python函数的参数的数量?
- getter和setter是糟糕的设计吗?相互矛盾的建议
- 您可以使用生成器函数来做什么?
- 将Python诗歌与Docker集成