在Python中__slots__的目的是什么——特别是当我想要使用它时,什么时候不使用它?
当前回答
除了其他答案,__slots__还通过将属性限制在预定义的列表中增加了一点排版安全性。这一直是JavaScript的一个问题,它还允许您向现有对象添加新属性,无论您是否有意。
下面是一个普通的unslot对象,它什么都不做,但是允许你添加属性:
class Unslotted:
pass
test = Unslotted()
test.name = 'Fred'
test.Name = 'Wilma'
由于Python是区分大小写的,所以拼写相同但大小写不同的两个属性是不同的。如果你怀疑其中一个是打字错误,那就太倒霉了。
使用插槽,你可以限制它:
class Slotted:
__slots__ = ('name')
pass
test = Slotted()
test.name = 'Fred' # OK
test.Name = 'Wilma' # Error
这一次,第二个属性(Name)是不允许的,因为它不在__slots__集合中。
我建议在可能的情况下使用__slots__更好,以保持对对象的更多控制。
其他回答
引用雅各布·海伦的话:
The proper use of __slots__ is to save space in objects. Instead of having a dynamic dict that allows adding attributes to objects at anytime, there is a static structure which does not allow additions after creation. [This use of __slots__ eliminates the overhead of one dict for every object.] While this is sometimes a useful optimization, it would be completely unnecessary if the Python interpreter was dynamic enough so that it would only require the dict when there actually were additions to the object. Unfortunately there is a side effect to slots. They change the behavior of the objects that have slots in a way that can be abused by control freaks and static typing weenies. This is bad, because the control freaks should be abusing the metaclasses and the static typing weenies should be abusing decorators, since in Python, there should be only one obvious way of doing something. Making CPython smart enough to handle saving space without __slots__ is a major undertaking, which is probably why it is not on the list of changes for P3k (yet).
__slot__属性的一个非常简单的例子。
问题:没有__slots__
如果我的类中没有__slot__属性,我可以向对象添加新属性。
class Test:
pass
obj1=Test()
obj2=Test()
print(obj1.__dict__) #--> {}
obj1.x=12
print(obj1.__dict__) # --> {'x': 12}
obj1.y=20
print(obj1.__dict__) # --> {'x': 12, 'y': 20}
obj2.x=99
print(obj2.__dict__) # --> {'x': 99}
如果你看上面的例子,你可以看到obj1和obj2有它们自己的x和y属性,python还为每个对象(obj1和obj2)创建了一个dict属性。
假设我的类Test有数千个这样的对象?在我的代码中,为每个对象创建一个额外的属性字典将导致大量的开销(内存,计算能力等)。
解决方案:使用__slots__
现在在下面的例子中,我的类Test包含__slots__属性。现在我不能添加新的属性到我的对象(属性x除外)和python不再创建dict属性。这消除了每个对象的开销,如果您有许多对象,这将变得非常重要。
class Test:
__slots__=("x")
obj1=Test()
obj2=Test()
obj1.x=12
print(obj1.x) # --> 12
obj2.x=99
print(obj2.x) # --> 99
obj1.y=28
print(obj1.y) # --> AttributeError: 'Test' object has no attribute 'y'
本质上,你没有使用__slots__。
当你认为你可能需要__slots__时,你实际上想要使用轻量级或Flyweight设计模式。在这些情况下,您不再希望使用纯Python对象。相反,您需要一个Python类对象的包装器来包装数组、结构体或numpy数组。
class Flyweight(object):
def get(self, theData, index):
return theData[index]
def set(self, theData, index, value):
theData[index]= value
类包装器没有属性——它只提供作用于底层数据的方法。方法可以简化为类方法。实际上,它可以简化为仅对底层数据数组进行操作的函数。
如果你要实例化很多(成百上千)同一个类的对象,你会想要使用__slots__。__slots__仅作为内存优化工具存在。
强烈建议使用__slots__来约束属性创建。
使用__slots__ pickle对象将无法使用默认的(最古老的)pickle协议;有必要指定一个更高的版本。
python的其他一些自省特性也可能受到不利影响。
除了在这里的其他答案中描述的无数优点-内存意识的紧凑实例,比更易变的__dict__承载实例更不容易出错等等-我发现使用__slots__提供了更清晰的类声明,因为类的实例变量显式地公开。
为了解决__slots__声明的继承问题,我使用了这个元类:
import abc
class Slotted(abc.ABCMeta):
""" A metaclass that ensures its classes, and all subclasses,
will be slotted types.
"""
def __new__(metacls, name, bases, attributes, **kwargs):
""" Override for `abc.ABCMeta.__new__(…)` setting up a
derived slotted class.
"""
if '__slots__' not in attributes:
attributes['__slots__'] = tuple()
return super(Slotted, metacls).__new__(metacls, name, # type: ignore
bases,
attributes,
**kwargs)
…如果在继承塔中声明为基类的元类,则确保从该基类派生的所有内容都将正确继承__slots__属性,即使中间类没有声明任何属性。像这样:
# note no __slots__ declaration necessary with the metaclass:
class Base(metaclass=Slotted):
pass
# class is properly slotted, no __dict__:
class Derived(Base):
__slots__ = 'slot', 'another_slot'
# class is also properly slotted:
class FurtherDerived(Derived):
pass
推荐文章
- 如何在交互式Python中查看整个命令历史?
- 如何显示有两个小数点后的浮点数?
- 如何用OpenCV2.0和Python2.6调整图像大小
- 在每个列表元素上调用int()函数?
- 当使用代码存储库时,如何引用资源的相对路径
- 如何在Flask-SQLAlchemy中按id删除记录
- 在Python中插入列表的第一个位置
- Python Pandas只合并某些列
- 如何在一行中连接两个集而不使用“|”
- 从字符串中移除前缀
- 代码结束时发出警报
- 如何在Python中按字母顺序排序字符串中的字母
- 在matplotlib中将y轴标签添加到次要y轴
- 如何消除数独方块的凹凸缺陷?
- 为什么出现这个UnboundLocalError(闭包)?