在Python中__slots__的目的是什么——特别是当我想要使用它时,什么时候不使用它?


当前回答

除了在这里的其他答案中描述的无数优点-内存意识的紧凑实例,比更易变的__dict__承载实例更不容易出错等等-我发现使用__slots__提供了更清晰的类声明,因为类的实例变量显式地公开。

为了解决__slots__声明的继承问题,我使用了这个元类:

import abc

class Slotted(abc.ABCMeta):
    
    """ A metaclass that ensures its classes, and all subclasses,
        will be slotted types.
    """
    
    def __new__(metacls, name, bases, attributes, **kwargs):
        """ Override for `abc.ABCMeta.__new__(…)` setting up a
            derived slotted class.
        """
        if '__slots__' not in attributes:
            attributes['__slots__'] = tuple()
        
        return super(Slotted, metacls).__new__(metacls, name, # type: ignore
                                                        bases,
                                                        attributes,
                                                      **kwargs)

…如果在继承塔中声明为基类的元类,则确保从该基类派生的所有内容都将正确继承__slots__属性,即使中间类没有声明任何属性。像这样:

# note no __slots__ declaration necessary with the metaclass:
class Base(metaclass=Slotted):
    pass

# class is properly slotted, no __dict__:
class Derived(Base):
    __slots__ = 'slot', 'another_slot'

# class is also properly slotted:
class FurtherDerived(Derived):
    pass

其他回答

插槽对于库调用非常有用,可以在进行函数调用时消除“命名方法分派”。SWIG文档中提到了这一点。对于想要减少常用调用函数的函数开销的高性能库来说,使用插槽要快得多。

这可能和OPs问题没有直接关系。它更多地与构建扩展有关,而不是与在对象上使用插槽语法有关。但它确实有助于完善插槽的使用情况以及它们背后的一些原因。

最初的问题是关于一般用例,而不仅仅是关于内存。 因此,这里应该提到的是,当实例化大量对象时,您也会获得更好的性能——有趣的是,当将大型文档解析为对象或从数据库中解析时。

下面是使用插槽和不使用插槽创建具有一百万个条目的对象树的比较。作为对树使用普通字典时的性能参考(OSX上的Py2.7.10):

********** RUN 1 **********
1.96036410332 <class 'css_tree_select.element.Element'>
3.02922606468 <class 'css_tree_select.element.ElementNoSlots'>
2.90828204155 dict
********** RUN 2 **********
1.77050495148 <class 'css_tree_select.element.Element'>
3.10655999184 <class 'css_tree_select.element.ElementNoSlots'>
2.84120798111 dict
********** RUN 3 **********
1.84069895744 <class 'css_tree_select.element.Element'>
3.21540498734 <class 'css_tree_select.element.ElementNoSlots'>
2.59615707397 dict
********** RUN 4 **********
1.75041103363 <class 'css_tree_select.element.Element'>
3.17366290092 <class 'css_tree_select.element.ElementNoSlots'>
2.70941114426 dict

测试类(标识,除了槽):

class Element(object):
    __slots__ = ['_typ', 'id', 'parent', 'childs']
    def __init__(self, typ, id, parent=None):
        self._typ = typ
        self.id = id
        self.childs = []
        if parent:
            self.parent = parent
            parent.childs.append(self)

class ElementNoSlots(object): (same, w/o slots)

Testcode,详细模式:

na, nb, nc = 100, 100, 100
for i in (1, 2, 3, 4):
    print '*' * 10, 'RUN', i, '*' * 10
    # tree with slot and no slot:
    for cls in Element, ElementNoSlots:
        t1 = time.time()
        root = cls('root', 'root')
        for i in xrange(na):
            ela = cls(typ='a', id=i, parent=root)
            for j in xrange(nb):
                elb = cls(typ='b', id=(i, j), parent=ela)
                for k in xrange(nc):
                    elc = cls(typ='c', id=(i, j, k), parent=elb)
        to =  time.time() - t1
        print to, cls
        del root

    # ref: tree with dicts only:
    t1 = time.time()
    droot = {'childs': []}
    for i in xrange(na):
        ela =  {'typ': 'a', id: i, 'childs': []}
        droot['childs'].append(ela)
        for j in xrange(nb):
            elb =  {'typ': 'b', id: (i, j), 'childs': []}
            ela['childs'].append(elb)
            for k in xrange(nc):
                elc =  {'typ': 'c', id: (i, j, k), 'childs': []}
                elb['childs'].append(elc)
    td = time.time() - t1
    print td, 'dict'
    del droot

除了其他答案,__slots__还通过将属性限制在预定义的列表中增加了一点排版安全性。这一直是JavaScript的一个问题,它还允许您向现有对象添加新属性,无论您是否有意。

下面是一个普通的unslot对象,它什么都不做,但是允许你添加属性:

class Unslotted:
    pass
test = Unslotted()
test.name = 'Fred'
test.Name = 'Wilma'

由于Python是区分大小写的,所以拼写相同但大小写不同的两个属性是不同的。如果你怀疑其中一个是打字错误,那就太倒霉了。

使用插槽,你可以限制它:

class Slotted:
    __slots__ = ('name')
    pass
test = Slotted()
test.name = 'Fred'      #   OK
test.Name = 'Wilma'     #   Error

这一次,第二个属性(Name)是不允许的,因为它不在__slots__集合中。

我建议在可能的情况下使用__slots__更好,以保持对对象的更多控制。

如果你要实例化很多(成百上千)同一个类的对象,你会想要使用__slots__。__slots__仅作为内存优化工具存在。

强烈建议使用__slots__来约束属性创建。

使用__slots__ pickle对象将无法使用默认的(最古老的)pickle协议;有必要指定一个更高的版本。

python的其他一些自省特性也可能受到不利影响。

每个python对象都有一个__dict__属性,它是一个包含所有其他属性的字典。例如,当你输入self时。Attr python实际上正在执行self.__dict__[' Attr ']。你可以想象使用字典来存储属性需要一些额外的空间和时间来访问它。

然而,当你使用__slots__时,为该类创建的任何对象都不会有__dict__属性。相反,所有属性访问都直接通过指针完成。

所以如果你想要一个C风格的结构而不是一个完整的类,你可以使用__slots__来压缩对象的大小并减少属性访问时间。一个很好的例子是一个包含属性x和y的Point类。如果你要有很多点,你可以尝试使用__slots__来节省一些内存。