在Python中__slots__的目的是什么——特别是当我想要使用它时,什么时候不使用它?


当前回答

从Python 3.9开始,字典可用于通过__slots__向属性添加描述。没有描述的属性可以使用None,即使给出了描述,私有变量也不会出现。

class Person:

    __slots__ = {
        "birthday":
            "A datetime.date object representing the person's birthday.",
        "name":
            "The first and last name.",
        "public_variable":
            None,
        "_private_variable":
            "Description",
    }


help(Person)
"""
Help on class Person in module __main__:

class Person(builtins.object)
 |  Data descriptors defined here:
 |
 |  birthday
 |      A datetime.date object representing the person's birthday.
 |
 |  name
 |      The first and last name.
 |
 |  public_variable
"""

其他回答

如果你要实例化很多(成百上千)同一个类的对象,你会想要使用__slots__。__slots__仅作为内存优化工具存在。

强烈建议使用__slots__来约束属性创建。

使用__slots__ pickle对象将无法使用默认的(最古老的)pickle协议;有必要指定一个更高的版本。

python的其他一些自省特性也可能受到不利影响。

插槽对于库调用非常有用,可以在进行函数调用时消除“命名方法分派”。SWIG文档中提到了这一点。对于想要减少常用调用函数的函数开销的高性能库来说,使用插槽要快得多。

这可能和OPs问题没有直接关系。它更多地与构建扩展有关,而不是与在对象上使用插槽语法有关。但它确实有助于完善插槽的使用情况以及它们背后的一些原因。

__slot__属性的一个非常简单的例子。

问题:没有__slots__

如果我的类中没有__slot__属性,我可以向对象添加新属性。

class Test:
    pass

obj1=Test()
obj2=Test()

print(obj1.__dict__)  #--> {}
obj1.x=12
print(obj1.__dict__)  # --> {'x': 12}
obj1.y=20
print(obj1.__dict__)  # --> {'x': 12, 'y': 20}

obj2.x=99
print(obj2.__dict__)  # --> {'x': 99}

如果你看上面的例子,你可以看到obj1和obj2有它们自己的x和y属性,python还为每个对象(obj1和obj2)创建了一个dict属性。

假设我的类Test有数千个这样的对象?在我的代码中,为每个对象创建一个额外的属性字典将导致大量的开销(内存,计算能力等)。

解决方案:使用__slots__

现在在下面的例子中,我的类Test包含__slots__属性。现在我不能添加新的属性到我的对象(属性x除外)和python不再创建dict属性。这消除了每个对象的开销,如果您有许多对象,这将变得非常重要。

class Test:
    __slots__=("x")

obj1=Test()
obj2=Test()
obj1.x=12
print(obj1.x)  # --> 12
obj2.x=99
print(obj2.x)  # --> 99

obj1.y=28
print(obj1.y)  # --> AttributeError: 'Test' object has no attribute 'y'

除了其他答案,这里还有一个使用__slots__的例子:

>>> class Test(object):   #Must be new-style class!
...  __slots__ = ['x', 'y']
... 
>>> pt = Test()
>>> dir(pt)
['__class__', '__delattr__', '__doc__', '__getattribute__', '__hash__', 
 '__init__', '__module__', '__new__', '__reduce__', '__reduce_ex__', 
 '__repr__', '__setattr__', '__slots__', '__str__', 'x', 'y']
>>> pt.x
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: x
>>> pt.x = 1
>>> pt.x
1
>>> pt.z = 2
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: 'Test' object has no attribute 'z'
>>> pt.__dict__
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: 'Test' object has no attribute '__dict__'
>>> pt.__slots__
['x', 'y']

因此,要实现__slots__,它只需要额外的一行(并使您的类成为一个新样式的类,如果它还不是的话)。通过这种方式,您可以将这些类的内存占用减少5倍,代价是必须编写自定义pickle代码(如果需要的话)。

最初的问题是关于一般用例,而不仅仅是关于内存。 因此,这里应该提到的是,当实例化大量对象时,您也会获得更好的性能——有趣的是,当将大型文档解析为对象或从数据库中解析时。

下面是使用插槽和不使用插槽创建具有一百万个条目的对象树的比较。作为对树使用普通字典时的性能参考(OSX上的Py2.7.10):

********** RUN 1 **********
1.96036410332 <class 'css_tree_select.element.Element'>
3.02922606468 <class 'css_tree_select.element.ElementNoSlots'>
2.90828204155 dict
********** RUN 2 **********
1.77050495148 <class 'css_tree_select.element.Element'>
3.10655999184 <class 'css_tree_select.element.ElementNoSlots'>
2.84120798111 dict
********** RUN 3 **********
1.84069895744 <class 'css_tree_select.element.Element'>
3.21540498734 <class 'css_tree_select.element.ElementNoSlots'>
2.59615707397 dict
********** RUN 4 **********
1.75041103363 <class 'css_tree_select.element.Element'>
3.17366290092 <class 'css_tree_select.element.ElementNoSlots'>
2.70941114426 dict

测试类(标识,除了槽):

class Element(object):
    __slots__ = ['_typ', 'id', 'parent', 'childs']
    def __init__(self, typ, id, parent=None):
        self._typ = typ
        self.id = id
        self.childs = []
        if parent:
            self.parent = parent
            parent.childs.append(self)

class ElementNoSlots(object): (same, w/o slots)

Testcode,详细模式:

na, nb, nc = 100, 100, 100
for i in (1, 2, 3, 4):
    print '*' * 10, 'RUN', i, '*' * 10
    # tree with slot and no slot:
    for cls in Element, ElementNoSlots:
        t1 = time.time()
        root = cls('root', 'root')
        for i in xrange(na):
            ela = cls(typ='a', id=i, parent=root)
            for j in xrange(nb):
                elb = cls(typ='b', id=(i, j), parent=ela)
                for k in xrange(nc):
                    elc = cls(typ='c', id=(i, j, k), parent=elb)
        to =  time.time() - t1
        print to, cls
        del root

    # ref: tree with dicts only:
    t1 = time.time()
    droot = {'childs': []}
    for i in xrange(na):
        ela =  {'typ': 'a', id: i, 'childs': []}
        droot['childs'].append(ela)
        for j in xrange(nb):
            elb =  {'typ': 'b', id: (i, j), 'childs': []}
            ela['childs'].append(elb)
            for k in xrange(nc):
                elc =  {'typ': 'c', id: (i, j, k), 'childs': []}
                elb['childs'].append(elc)
    td = time.time() - t1
    print td, 'dict'
    del droot