在Python中__slots__的目的是什么——特别是当我想要使用它时,什么时候不使用它?


当前回答

__slot__属性的一个非常简单的例子。

问题:没有__slots__

如果我的类中没有__slot__属性,我可以向对象添加新属性。

class Test:
    pass

obj1=Test()
obj2=Test()

print(obj1.__dict__)  #--> {}
obj1.x=12
print(obj1.__dict__)  # --> {'x': 12}
obj1.y=20
print(obj1.__dict__)  # --> {'x': 12, 'y': 20}

obj2.x=99
print(obj2.__dict__)  # --> {'x': 99}

如果你看上面的例子,你可以看到obj1和obj2有它们自己的x和y属性,python还为每个对象(obj1和obj2)创建了一个dict属性。

假设我的类Test有数千个这样的对象?在我的代码中,为每个对象创建一个额外的属性字典将导致大量的开销(内存,计算能力等)。

解决方案:使用__slots__

现在在下面的例子中,我的类Test包含__slots__属性。现在我不能添加新的属性到我的对象(属性x除外)和python不再创建dict属性。这消除了每个对象的开销,如果您有许多对象,这将变得非常重要。

class Test:
    __slots__=("x")

obj1=Test()
obj2=Test()
obj1.x=12
print(obj1.x)  # --> 12
obj2.x=99
print(obj2.x)  # --> 99

obj1.y=28
print(obj1.y)  # --> AttributeError: 'Test' object has no attribute 'y'

其他回答

除了在这里的其他答案中描述的无数优点-内存意识的紧凑实例,比更易变的__dict__承载实例更不容易出错等等-我发现使用__slots__提供了更清晰的类声明,因为类的实例变量显式地公开。

为了解决__slots__声明的继承问题,我使用了这个元类:

import abc

class Slotted(abc.ABCMeta):
    
    """ A metaclass that ensures its classes, and all subclasses,
        will be slotted types.
    """
    
    def __new__(metacls, name, bases, attributes, **kwargs):
        """ Override for `abc.ABCMeta.__new__(…)` setting up a
            derived slotted class.
        """
        if '__slots__' not in attributes:
            attributes['__slots__'] = tuple()
        
        return super(Slotted, metacls).__new__(metacls, name, # type: ignore
                                                        bases,
                                                        attributes,
                                                      **kwargs)

…如果在继承塔中声明为基类的元类,则确保从该基类派生的所有内容都将正确继承__slots__属性,即使中间类没有声明任何属性。像这样:

# note no __slots__ declaration necessary with the metaclass:
class Base(metaclass=Slotted):
    pass

# class is properly slotted, no __dict__:
class Derived(Base):
    __slots__ = 'slot', 'another_slot'

# class is also properly slotted:
class FurtherDerived(Derived):
    pass

从Python 3.9开始,字典可用于通过__slots__向属性添加描述。没有描述的属性可以使用None,即使给出了描述,私有变量也不会出现。

class Person:

    __slots__ = {
        "birthday":
            "A datetime.date object representing the person's birthday.",
        "name":
            "The first and last name.",
        "public_variable":
            None,
        "_private_variable":
            "Description",
    }


help(Person)
"""
Help on class Person in module __main__:

class Person(builtins.object)
 |  Data descriptors defined here:
 |
 |  birthday
 |      A datetime.date object representing the person's birthday.
 |
 |  name
 |      The first and last name.
 |
 |  public_variable
"""

除了其他答案,__slots__还通过将属性限制在预定义的列表中增加了一点排版安全性。这一直是JavaScript的一个问题,它还允许您向现有对象添加新属性,无论您是否有意。

下面是一个普通的unslot对象,它什么都不做,但是允许你添加属性:

class Unslotted:
    pass
test = Unslotted()
test.name = 'Fred'
test.Name = 'Wilma'

由于Python是区分大小写的,所以拼写相同但大小写不同的两个属性是不同的。如果你怀疑其中一个是打字错误,那就太倒霉了。

使用插槽,你可以限制它:

class Slotted:
    __slots__ = ('name')
    pass
test = Slotted()
test.name = 'Fred'      #   OK
test.Name = 'Wilma'     #   Error

这一次,第二个属性(Name)是不允许的,因为它不在__slots__集合中。

我建议在可能的情况下使用__slots__更好,以保持对对象的更多控制。

最初的问题是关于一般用例,而不仅仅是关于内存。 因此,这里应该提到的是,当实例化大量对象时,您也会获得更好的性能——有趣的是,当将大型文档解析为对象或从数据库中解析时。

下面是使用插槽和不使用插槽创建具有一百万个条目的对象树的比较。作为对树使用普通字典时的性能参考(OSX上的Py2.7.10):

********** RUN 1 **********
1.96036410332 <class 'css_tree_select.element.Element'>
3.02922606468 <class 'css_tree_select.element.ElementNoSlots'>
2.90828204155 dict
********** RUN 2 **********
1.77050495148 <class 'css_tree_select.element.Element'>
3.10655999184 <class 'css_tree_select.element.ElementNoSlots'>
2.84120798111 dict
********** RUN 3 **********
1.84069895744 <class 'css_tree_select.element.Element'>
3.21540498734 <class 'css_tree_select.element.ElementNoSlots'>
2.59615707397 dict
********** RUN 4 **********
1.75041103363 <class 'css_tree_select.element.Element'>
3.17366290092 <class 'css_tree_select.element.ElementNoSlots'>
2.70941114426 dict

测试类(标识,除了槽):

class Element(object):
    __slots__ = ['_typ', 'id', 'parent', 'childs']
    def __init__(self, typ, id, parent=None):
        self._typ = typ
        self.id = id
        self.childs = []
        if parent:
            self.parent = parent
            parent.childs.append(self)

class ElementNoSlots(object): (same, w/o slots)

Testcode,详细模式:

na, nb, nc = 100, 100, 100
for i in (1, 2, 3, 4):
    print '*' * 10, 'RUN', i, '*' * 10
    # tree with slot and no slot:
    for cls in Element, ElementNoSlots:
        t1 = time.time()
        root = cls('root', 'root')
        for i in xrange(na):
            ela = cls(typ='a', id=i, parent=root)
            for j in xrange(nb):
                elb = cls(typ='b', id=(i, j), parent=ela)
                for k in xrange(nc):
                    elc = cls(typ='c', id=(i, j, k), parent=elb)
        to =  time.time() - t1
        print to, cls
        del root

    # ref: tree with dicts only:
    t1 = time.time()
    droot = {'childs': []}
    for i in xrange(na):
        ela =  {'typ': 'a', id: i, 'childs': []}
        droot['childs'].append(ela)
        for j in xrange(nb):
            elb =  {'typ': 'b', id: (i, j), 'childs': []}
            ela['childs'].append(elb)
            for k in xrange(nc):
                elc =  {'typ': 'c', id: (i, j, k), 'childs': []}
                elb['childs'].append(elc)
    td = time.time() - t1
    print td, 'dict'
    del droot

Another somewhat obscure use of __slots__ is to add attributes to an object proxy from the ProxyTypes package, formerly part of the PEAK project. Its ObjectWrapper allows you to proxy another object, but intercept all interactions with the proxied object. It is not very commonly used (and no Python 3 support), but we have used it to implement a thread-safe blocking wrapper around an async implementation based on tornado that bounces all access to the proxied object through the ioloop, using thread-safe concurrent.Future objects to synchronise and return results.

默认情况下,对代理对象的任何属性访问都将为您提供代理对象的结果。如果你需要在代理对象上添加一个属性,可以使用__slots__。

from peak.util.proxies import ObjectWrapper

class Original(object):
    def __init__(self):
        self.name = 'The Original'

class ProxyOriginal(ObjectWrapper):

    __slots__ = ['proxy_name']

    def __init__(self, subject, proxy_name):
        # proxy_info attributed added directly to the
        # Original instance, not the ProxyOriginal instance
        self.proxy_info = 'You are proxied by {}'.format(proxy_name)

        # proxy_name added to ProxyOriginal instance, since it is
        # defined in __slots__
        self.proxy_name = proxy_name

        super(ProxyOriginal, self).__init__(subject)

if __name__ == "__main__":
    original = Original()
    proxy = ProxyOriginal(original, 'Proxy Overlord')

    # Both statements print "The Original"
    print "original.name: ", original.name
    print "proxy.name: ", proxy.name

    # Both statements below print 
    # "You are proxied by Proxy Overlord", since the ProxyOriginal
    # __init__ sets it to the original object 
    print "original.proxy_info: ", original.proxy_info
    print "proxy.proxy_info: ", proxy.proxy_info

    # prints "Proxy Overlord"
    print "proxy.proxy_name: ", proxy.proxy_name
    # Raises AttributeError since proxy_name is only set on 
    # the proxy object
    print "original.proxy_name: ", proxy.proxy_name