在Python中__slots__的目的是什么——特别是当我想要使用它时,什么时候不使用它?


当前回答

类实例的属性有3个属性:实例、属性名和属性值。

在常规属性访问中,实例充当字典,属性名充当字典查找值中的键。

实例(属性)——>值

在__slots__访问中,属性的名称充当字典,实例充当字典查找值中的键。

属性(实例)——>值

在flyweight模式中,属性的名称充当字典,值充当查找实例的字典中的键。

属性(value)——>实例

其他回答

Another somewhat obscure use of __slots__ is to add attributes to an object proxy from the ProxyTypes package, formerly part of the PEAK project. Its ObjectWrapper allows you to proxy another object, but intercept all interactions with the proxied object. It is not very commonly used (and no Python 3 support), but we have used it to implement a thread-safe blocking wrapper around an async implementation based on tornado that bounces all access to the proxied object through the ioloop, using thread-safe concurrent.Future objects to synchronise and return results.

默认情况下,对代理对象的任何属性访问都将为您提供代理对象的结果。如果你需要在代理对象上添加一个属性,可以使用__slots__。

from peak.util.proxies import ObjectWrapper

class Original(object):
    def __init__(self):
        self.name = 'The Original'

class ProxyOriginal(ObjectWrapper):

    __slots__ = ['proxy_name']

    def __init__(self, subject, proxy_name):
        # proxy_info attributed added directly to the
        # Original instance, not the ProxyOriginal instance
        self.proxy_info = 'You are proxied by {}'.format(proxy_name)

        # proxy_name added to ProxyOriginal instance, since it is
        # defined in __slots__
        self.proxy_name = proxy_name

        super(ProxyOriginal, self).__init__(subject)

if __name__ == "__main__":
    original = Original()
    proxy = ProxyOriginal(original, 'Proxy Overlord')

    # Both statements print "The Original"
    print "original.name: ", original.name
    print "proxy.name: ", proxy.name

    # Both statements below print 
    # "You are proxied by Proxy Overlord", since the ProxyOriginal
    # __init__ sets it to the original object 
    print "original.proxy_info: ", original.proxy_info
    print "proxy.proxy_info: ", proxy.proxy_info

    # prints "Proxy Overlord"
    print "proxy.proxy_name: ", proxy.proxy_name
    # Raises AttributeError since proxy_name is only set on 
    # the proxy object
    print "original.proxy_name: ", proxy.proxy_name

除了其他答案,这里还有一个使用__slots__的例子:

>>> class Test(object):   #Must be new-style class!
...  __slots__ = ['x', 'y']
... 
>>> pt = Test()
>>> dir(pt)
['__class__', '__delattr__', '__doc__', '__getattribute__', '__hash__', 
 '__init__', '__module__', '__new__', '__reduce__', '__reduce_ex__', 
 '__repr__', '__setattr__', '__slots__', '__str__', 'x', 'y']
>>> pt.x
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: x
>>> pt.x = 1
>>> pt.x
1
>>> pt.z = 2
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: 'Test' object has no attribute 'z'
>>> pt.__dict__
Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
AttributeError: 'Test' object has no attribute '__dict__'
>>> pt.__slots__
['x', 'y']

因此,要实现__slots__,它只需要额外的一行(并使您的类成为一个新样式的类,如果它还不是的话)。通过这种方式,您可以将这些类的内存占用减少5倍,代价是必须编写自定义pickle代码(如果需要的话)。

从Python 3.9开始,字典可用于通过__slots__向属性添加描述。没有描述的属性可以使用None,即使给出了描述,私有变量也不会出现。

class Person:

    __slots__ = {
        "birthday":
            "A datetime.date object representing the person's birthday.",
        "name":
            "The first and last name.",
        "public_variable":
            None,
        "_private_variable":
            "Description",
    }


help(Person)
"""
Help on class Person in module __main__:

class Person(builtins.object)
 |  Data descriptors defined here:
 |
 |  birthday
 |      A datetime.date object representing the person's birthday.
 |
 |  name
 |      The first and last name.
 |
 |  public_variable
"""

最初的问题是关于一般用例,而不仅仅是关于内存。 因此,这里应该提到的是,当实例化大量对象时,您也会获得更好的性能——有趣的是,当将大型文档解析为对象或从数据库中解析时。

下面是使用插槽和不使用插槽创建具有一百万个条目的对象树的比较。作为对树使用普通字典时的性能参考(OSX上的Py2.7.10):

********** RUN 1 **********
1.96036410332 <class 'css_tree_select.element.Element'>
3.02922606468 <class 'css_tree_select.element.ElementNoSlots'>
2.90828204155 dict
********** RUN 2 **********
1.77050495148 <class 'css_tree_select.element.Element'>
3.10655999184 <class 'css_tree_select.element.ElementNoSlots'>
2.84120798111 dict
********** RUN 3 **********
1.84069895744 <class 'css_tree_select.element.Element'>
3.21540498734 <class 'css_tree_select.element.ElementNoSlots'>
2.59615707397 dict
********** RUN 4 **********
1.75041103363 <class 'css_tree_select.element.Element'>
3.17366290092 <class 'css_tree_select.element.ElementNoSlots'>
2.70941114426 dict

测试类(标识,除了槽):

class Element(object):
    __slots__ = ['_typ', 'id', 'parent', 'childs']
    def __init__(self, typ, id, parent=None):
        self._typ = typ
        self.id = id
        self.childs = []
        if parent:
            self.parent = parent
            parent.childs.append(self)

class ElementNoSlots(object): (same, w/o slots)

Testcode,详细模式:

na, nb, nc = 100, 100, 100
for i in (1, 2, 3, 4):
    print '*' * 10, 'RUN', i, '*' * 10
    # tree with slot and no slot:
    for cls in Element, ElementNoSlots:
        t1 = time.time()
        root = cls('root', 'root')
        for i in xrange(na):
            ela = cls(typ='a', id=i, parent=root)
            for j in xrange(nb):
                elb = cls(typ='b', id=(i, j), parent=ela)
                for k in xrange(nc):
                    elc = cls(typ='c', id=(i, j, k), parent=elb)
        to =  time.time() - t1
        print to, cls
        del root

    # ref: tree with dicts only:
    t1 = time.time()
    droot = {'childs': []}
    for i in xrange(na):
        ela =  {'typ': 'a', id: i, 'childs': []}
        droot['childs'].append(ela)
        for j in xrange(nb):
            elb =  {'typ': 'b', id: (i, j), 'childs': []}
            ela['childs'].append(elb)
            for k in xrange(nc):
                elc =  {'typ': 'c', id: (i, j, k), 'childs': []}
                elb['childs'].append(elc)
    td = time.time() - t1
    print td, 'dict'
    del droot

本质上,你没有使用__slots__。

当你认为你可能需要__slots__时,你实际上想要使用轻量级或Flyweight设计模式。在这些情况下,您不再希望使用纯Python对象。相反,您需要一个Python类对象的包装器来包装数组、结构体或numpy数组。

class Flyweight(object):

    def get(self, theData, index):
        return theData[index]

    def set(self, theData, index, value):
        theData[index]= value

类包装器没有属性——它只提供作用于底层数据的方法。方法可以简化为类方法。实际上,它可以简化为仅对底层数据数组进行操作的函数。