什么是np完全问题?为什么它在计算机科学中如此重要?
当前回答
NP问题:-
NP问题是一类可以在非确定多项式时间内解决的问题。 非确定性算法分为两个阶段。 非确定性猜测阶段&&非确定性验证阶段。
Np问题的类型
NP完全 NP困难
NP完全问题:-
如果问题A具有以下两个性质,则称为NP完全问题
它属于NP类。 NP中的任何其他问题都可以在多项式时间内转化为P。
一些例子:
背包问题 子集和问题 顶点覆盖问题
其他回答
这是一类问题,我们必须模拟每一种可能性,以确保我们有最优解。
对于一些np完全问题,有很多好的启发式方法,但它们充其量只是一个有根据的猜测。
NP问题:-
NP问题是一类可以在非确定多项式时间内解决的问题。 非确定性算法分为两个阶段。 非确定性猜测阶段&&非确定性验证阶段。
Np问题的类型
NP完全 NP困难
NP完全问题:-
如果问题A具有以下两个性质,则称为NP完全问题
它属于NP类。 NP中的任何其他问题都可以在多项式时间内转化为P。
一些例子:
背包问题 子集和问题 顶点覆盖问题
我们需要把算法和问题分开。我们编写算法来解决问题,它们以某种方式扩展。虽然这是一种简化,但如果缩放足够好,我们就用“P”来标记算法,如果缩放不够好,就用“NP”来标记算法。
了解我们试图解决的问题,而不是我们用来解决它们的算法,是有帮助的。所以我们说,所有具有良好伸缩算法的问题都是"在P内"的。而那些有一个糟糕的缩放算法的是“NP”。
That means that lots of simple problems are "in NP" too, because we can write bad algorithms to solve easy problems. It would be good to know which problems in NP are the really tricky ones, but we don't just want to say "it's the ones we haven't found a good algorithm for". After all, I could come up with a problem (call it X) that I think needs a super-amazing algorithm. I tell the world that the best algorithm I could come up with to solve X scales badly, and so I think that X is a really tough problem. But tomorrow, maybe somebody cleverer than me invents an algorithm which solves X and is in P. So this isn't a very good definition of hard problems.
尽管如此,NP中仍有许多问题,没有人知道一个好的算法。因此,如果我能证明X是一个特定的问题:一个解决X的好算法也可以用某种迂回的方式,为NP中的所有其他问题提供一个好算法。现在人们可能更相信X是一个棘手的问题。在这种情况下,我们称X为np完全。
np完全问题是一组问题,其中每一个问题都是任意的 其他np问题可以在多项式时间内约简,其解 仍然可以在多项式时间内验证。也就是说,任何NP问题都可以 转化为np完全问题。 非正式地说,NP完全问题是一个NP问题,至少是“难” 和NP中的其他问题一样。
上面NP完全问题的定义是正确的,但我想我可能会对它们的哲学重要性进行抒情,因为还没有人解决这个问题。
几乎你遇到的所有复杂问题都是NP完全的。这门课有一些非常基础的东西,从计算上看和容易解决的问题是不同的。它们有自己的味道,而且不难辨认。这基本上意味着任何适度复杂的算法都不可能精确地解决——调度、优化、包装、覆盖等。
But not all is lost if a problem you'll encounter is NP Complete. There is a vast and very technical field where people study approximation algorithms, which will give you guarantees for being close to the solution of an NP complete problem. Some of these are incredibly strong guarantees -- for example, for 3sat, you can get a 7/8 guarantee through a really obvious algorithm. Even better, in reality, there are some very strong heuristics, which excel at giving great answers (but no guarantees!) for these problems.
请注意,两个非常著名的问题——图同构和因式分解——不知道是P或NP。
推荐文章
- 段树、区间树、二叉索引树和范围树之间有什么区别?
- 给定一个数字,找出下一个与原始数字具有完全相同的数字集的更高的数字
- HSL到RGB的颜色转换
- 使用Java在原语数组中查找最大/最小值
- 好的Java图算法库?
- foreach和map有区别吗?
- 什么时候我应该使用Kruskal而不是Prim(反之亦然)?
- 取一个集中在中心的随机数
- PHP中接口的意义是什么?
- 设计模式:工厂vs工厂方法vs抽象工厂
- 如何计算圆周长上的一点?
- 为什么处理排序数组比未排序数组慢?
- 从整数流中找到运行中位数
- 在日历应用程序中建模重复事件的最佳方法是什么?
- 在任何情况下,您更喜欢高大o时间复杂度算法而不是低大o时间复杂度算法吗?