什么是np完全问题?为什么它在计算机科学中如此重要?
当前回答
这是一类问题,我们必须模拟每一种可能性,以确保我们有最优解。
对于一些np完全问题,有很多好的启发式方法,但它们充其量只是一个有根据的猜测。
其他回答
老实说,维基百科可能是寻找答案的最佳场所。
如果NP = P,那么我们就可以比我们之前认为的更快地解决非常困难的问题。如果我们在P(多项式)时间内只解决了一个np -完全问题,那么它可以应用于np -完全范畴内的所有其他问题。
np完全是一类问题。
P类由那些可以在多项式时间内解决的问题组成。例如,对于某个常数k,它们可以用O(nk)来求解,其中n是输入的大小。简单地说,您可以编写一个在合理时间内运行的程序。
NP类由那些在多项式时间内可验证的问题组成。也就是说,如果我们已知一个可能的解,那么我们可以在多项式时间内检验这个解是否正确。
一些例子是布尔可满足性(或SAT)问题,或哈密顿循环问题。在NP类中有很多已知的问题。
NP完全意味着问题至少和NP中的任何问题一样难。
它对计算机科学很重要,因为它已经证明了NP中的任何问题都可以转化为NP完备中的另一个问题。这意味着任何一个NP完全问题的解都是所有NP问题的解。
安全性中的许多算法依赖于NP困难问题没有已知解的事实。如果能找到解决方案,它肯定会对计算产生重大影响。
如果你想找一个np完全问题的例子那么我建议你看一下3-SAT。
基本前提是你有一个合取范式的表达式,这是一种说法,你有一系列由or连接的表达式,它们都必须为真:
(a or b) and (b or !c) and (d or !e or f) ...
3- sat问题是找到一个满足表达式的解,其中每个or表达式恰好有3个布尔值可以匹配:
(a or !b or !c) and (!a or b or !d) and (b or !c or d) ...
这个问题的解可能是(A =T, b=T, c=F, d=F)。然而,目前还没有发现能在一般情况下在多项式时间内解决这个问题的算法。这意味着解决这个问题的最佳方法基本上是进行强力的猜测和检查,并尝试不同的组合,直到找到一个有效的组合。
3-SAT问题的特殊之处在于任何np完全问题都可以简化为3-SAT问题。这意味着如果你能找到一个多项式时间算法来解决这个问题,那么你就能得到1,000,000美元,更不用说全世界计算机科学家和数学家的尊重和钦佩了。
据我所知
P是可以用确定性TM在多项式时间内解决的问题集。
NP是需要在多项式时间内解决非确定性TM的问题集。 这意味着我们可以用多项式时间并行检查每个实例的所有不同变量组合。如果问题是可解决的,那么至少有一个平行的TM实例会以“是”而停止。 这也意味着如果你能对变量/解做出正确的猜测,那么你只需要在多项式时间内检查它的有效性。
NP- hard是指问题比NP更难的集合。这意味着NP- hard问题比NP集中的任何问题都要难。即使使用图灵机的非确定性,这些问题也是指数级的。所以并行计算在解决这些问题时没有帮助。
NP- complete是NP和NP- hard的交集集。根据我的理解,
NP完全中的问题至少和NP集中最难的问题一样难。 所有np -完全问题的类都是等价的,即np -完全集中的一个问题可以简化为任何其他的np -完全问题。这意味着,如果任何一个np完全问题都有一个有效的解,那么所有的np完全问题都可以用相同的解来解决。
如果np -完全集中的任何问题在多项式时间内确定可解,则整个np -完全集在多项式时间内确定可解。此外,由于NP-完全问题至少与NP集中最难的问题一样难,NP集中的所有问题(等于或容易于NP-完全集中的问题)将被确定性多项式的运行时间所限制,将P集扩展到NP集中,从而得到P=NP。
如果我弄错了,请告诉我。
I have heard an explanation, that is:" NP-Completeness is probably one of the more enigmatic ideas in the study of algorithms. "NP" stands for "nondeterministic polynomial time," and is the name for what is called a complexity class to which problems can belong. The important thing about the NP complexity class is that problems within that class can be verified by a polynomial time algorithm. As an example, consider the problem of counting stuff. Suppose there are a bunch of apples on a table. The problem is "How many apples are there?" You are provided with a possible answer, 8. You can verify this answer in polynomial time by using the algorithm of, duh, counting the apples. Counting the apples happens in O(n) (that's Big-oh notation) time, because it takes one step to count each apple. For n apples, you need n steps. This problem is in the NP complexity class.
如果一个问题可以证明它既NP-Hard,又在多项式时间内可验证,那么它就被归类为NP-complete。在不深入讨论NP-Hard的情况下,只要说明某些问题的多项式时间解还没有找到就足够了。也就是说,它需要n!(n !)步来解它们。然而,如果给你一个np完全问题的解,你可以在多项式时间内验证它。
np完全问题的一个经典例子是旅行商问题。”
作者:ApoxyButt 来自:http://www.everything2.com/title/NP-complete