什么是np完全问题?为什么它在计算机科学中如此重要?
当前回答
老实说,维基百科可能是寻找答案的最佳场所。
如果NP = P,那么我们就可以比我们之前认为的更快地解决非常困难的问题。如果我们在P(多项式)时间内只解决了一个np -完全问题,那么它可以应用于np -完全范畴内的所有其他问题。
其他回答
I have heard an explanation, that is:" NP-Completeness is probably one of the more enigmatic ideas in the study of algorithms. "NP" stands for "nondeterministic polynomial time," and is the name for what is called a complexity class to which problems can belong. The important thing about the NP complexity class is that problems within that class can be verified by a polynomial time algorithm. As an example, consider the problem of counting stuff. Suppose there are a bunch of apples on a table. The problem is "How many apples are there?" You are provided with a possible answer, 8. You can verify this answer in polynomial time by using the algorithm of, duh, counting the apples. Counting the apples happens in O(n) (that's Big-oh notation) time, because it takes one step to count each apple. For n apples, you need n steps. This problem is in the NP complexity class.
如果一个问题可以证明它既NP-Hard,又在多项式时间内可验证,那么它就被归类为NP-complete。在不深入讨论NP-Hard的情况下,只要说明某些问题的多项式时间解还没有找到就足够了。也就是说,它需要n!(n !)步来解它们。然而,如果给你一个np完全问题的解,你可以在多项式时间内验证它。
np完全问题的一个经典例子是旅行商问题。”
作者:ApoxyButt 来自:http://www.everything2.com/title/NP-complete
什么是NP?
NP是所有决策问题(答案是或否的问题)的集合,其中“是”答案可以通过确定性图灵机在多项式时间(O(nk),其中n是问题大小,k是常数)验证。有时用多项式时间来定义快或快。
P是什么?
P是由确定性图灵机在多项式时间内解决的所有决策问题的集合。由于它们可以在多项式时间内求解,因此也可以在多项式时间内验证。因此P是NP的子集。
什么是np完全?
NP中的问题x也属于NP完全,当且仅当NP中的所有其他问题都可以快速地(即。在多项式时间内)转换成x。
换句话说:
x在NP中,并且 NP中的每个问题都可约为x
所以,NP完全问题的有趣之处在于,如果任何一个NP完全问题可以快速解决,那么所有NP问题都可以快速解决。
另见帖子“P=NP”是什么?为什么这是一个如此著名的问题?
什么是NP-Hard?
NP- hard是指至少和NP中最难的问题一样难的问题。注意,np完全问题也是np难的。然而,并非所有NP难问题都是NP问题(甚至是决策问题),尽管有NP作为前缀。NP-hard中的NP并不意味着非确定性多项式时间。是的,这令人困惑,但它的用法根深蒂固,不太可能改变。
如果你想找一个np完全问题的例子那么我建议你看一下3-SAT。
基本前提是你有一个合取范式的表达式,这是一种说法,你有一系列由or连接的表达式,它们都必须为真:
(a or b) and (b or !c) and (d or !e or f) ...
3- sat问题是找到一个满足表达式的解,其中每个or表达式恰好有3个布尔值可以匹配:
(a or !b or !c) and (!a or b or !d) and (b or !c or d) ...
这个问题的解可能是(A =T, b=T, c=F, d=F)。然而,目前还没有发现能在一般情况下在多项式时间内解决这个问题的算法。这意味着解决这个问题的最佳方法基本上是进行强力的猜测和检查,并尝试不同的组合,直到找到一个有效的组合。
3-SAT问题的特殊之处在于任何np完全问题都可以简化为3-SAT问题。这意味着如果你能找到一个多项式时间算法来解决这个问题,那么你就能得到1,000,000美元,更不用说全世界计算机科学家和数学家的尊重和钦佩了。
老实说,维基百科可能是寻找答案的最佳场所。
如果NP = P,那么我们就可以比我们之前认为的更快地解决非常困难的问题。如果我们在P(多项式)时间内只解决了一个np -完全问题,那么它可以应用于np -完全范畴内的所有其他问题。
这是一类问题,我们必须模拟每一种可能性,以确保我们有最优解。
对于一些np完全问题,有很多好的启发式方法,但它们充其量只是一个有根据的猜测。
推荐文章
- 段树、区间树、二叉索引树和范围树之间有什么区别?
- 给定一个数字,找出下一个与原始数字具有完全相同的数字集的更高的数字
- HSL到RGB的颜色转换
- 使用Java在原语数组中查找最大/最小值
- 好的Java图算法库?
- foreach和map有区别吗?
- 什么时候我应该使用Kruskal而不是Prim(反之亦然)?
- 取一个集中在中心的随机数
- PHP中接口的意义是什么?
- 设计模式:工厂vs工厂方法vs抽象工厂
- 如何计算圆周长上的一点?
- 为什么处理排序数组比未排序数组慢?
- 从整数流中找到运行中位数
- 在日历应用程序中建模重复事件的最佳方法是什么?
- 在任何情况下,您更喜欢高大o时间复杂度算法而不是低大o时间复杂度算法吗?