什么是np完全问题?为什么它在计算机科学中如此重要?


当前回答

NP-Complete指的是非常具体的东西,你必须小心,否则你会弄错定义。首先,NP问题是一个是/否问题

对于答案为"是"的问题的每个实例都有多项式时间证明,即答案为"是",或者(等价地) 存在一种多项式时间算法(可能使用随机变量),如果问题实例的答案是“是”,那么它有非零概率回答“是”,如果答案是“否”,则它会在100%的时间内回答“否”。换句话说,该算法的假阴性率必须小于100%,并且没有假阳性。

问题X是np完全的,如果

X在NP中,并且 对于NP中的任何问题Y,都有一个从Y到X的“约简”:一个多项式时间算法,将Y的任何实例转换为X的实例,当且仅当X实例的答案是“是”时,Y实例的答案是“是”。

如果X是NP完全的,并且存在一个确定性的多项式时间算法,可以正确地解决X的所有实例(0%假阳性,0%假阴性),那么NP中的任何问题都可以在确定性多项式时间中解决(通过归约到X)。

So far, nobody has come up with such a deterministic polynomial-time algorithm, but nobody has proven one doesn't exist (there's a million bucks for anyone who can do either: the is the P = NP problem). That doesn't mean that you can't solve a particular instance of an NP-Complete (or NP-Hard) problem. It just means you can't have something that will work reliably on all instances of a problem the same way you could reliably sort a list of integers. You might very well be able to come up with an algorithm that will work very well on all practical instances of a NP-Hard problem.

其他回答

老实说,维基百科可能是寻找答案的最佳场所。

如果NP = P,那么我们就可以比我们之前认为的更快地解决非常困难的问题。如果我们在P(多项式)时间内只解决了一个np -完全问题,那么它可以应用于np -完全范畴内的所有其他问题。

这是一类问题,我们必须模拟每一种可能性,以确保我们有最优解。

对于一些np完全问题,有很多好的启发式方法,但它们充其量只是一个有根据的猜测。

什么是NP?

NP是所有决策问题(答案是或否的问题)的集合,其中“是”答案可以通过确定性图灵机在多项式时间(O(nk),其中n是问题大小,k是常数)验证。有时用多项式时间来定义快或快。

P是什么?

P是由确定性图灵机在多项式时间内解决的所有决策问题的集合。由于它们可以在多项式时间内求解,因此也可以在多项式时间内验证。因此P是NP的子集。

什么是np完全?

NP中的问题x也属于NP完全,当且仅当NP中的所有其他问题都可以快速地(即。在多项式时间内)转换成x。

换句话说:

x在NP中,并且 NP中的每个问题都可约为x

所以,NP完全问题的有趣之处在于,如果任何一个NP完全问题可以快速解决,那么所有NP问题都可以快速解决。

另见帖子“P=NP”是什么?为什么这是一个如此著名的问题?

什么是NP-Hard?

NP- hard是指至少和NP中最难的问题一样难的问题。注意,np完全问题也是np难的。然而,并非所有NP难问题都是NP问题(甚至是决策问题),尽管有NP作为前缀。NP-hard中的NP并不意味着非确定性多项式时间。是的,这令人困惑,但它的用法根深蒂固,不太可能改变。

I have heard an explanation, that is:" NP-Completeness is probably one of the more enigmatic ideas in the study of algorithms. "NP" stands for "nondeterministic polynomial time," and is the name for what is called a complexity class to which problems can belong. The important thing about the NP complexity class is that problems within that class can be verified by a polynomial time algorithm. As an example, consider the problem of counting stuff. Suppose there are a bunch of apples on a table. The problem is "How many apples are there?" You are provided with a possible answer, 8. You can verify this answer in polynomial time by using the algorithm of, duh, counting the apples. Counting the apples happens in O(n) (that's Big-oh notation) time, because it takes one step to count each apple. For n apples, you need n steps. This problem is in the NP complexity class.

如果一个问题可以证明它既NP-Hard,又在多项式时间内可验证,那么它就被归类为NP-complete。在不深入讨论NP-Hard的情况下,只要说明某些问题的多项式时间解还没有找到就足够了。也就是说,它需要n!(n !)步来解它们。然而,如果给你一个np完全问题的解,你可以在多项式时间内验证它。

np完全问题的一个经典例子是旅行商问题。”

作者:ApoxyButt 来自:http://www.everything2.com/title/NP-complete

np完全问题是一组问题,其中每一个问题都是任意的 其他np问题可以在多项式时间内约简,其解 仍然可以在多项式时间内验证。也就是说,任何NP问题都可以 转化为np完全问题。 非正式地说,NP完全问题是一个NP问题,至少是“难” 和NP中的其他问题一样。