什么是np完全问题?为什么它在计算机科学中如此重要?


当前回答

我们需要把算法和问题分开。我们编写算法来解决问题,它们以某种方式扩展。虽然这是一种简化,但如果缩放足够好,我们就用“P”来标记算法,如果缩放不够好,就用“NP”来标记算法。

了解我们试图解决的问题,而不是我们用来解决它们的算法,是有帮助的。所以我们说,所有具有良好伸缩算法的问题都是"在P内"的。而那些有一个糟糕的缩放算法的是“NP”。

That means that lots of simple problems are "in NP" too, because we can write bad algorithms to solve easy problems. It would be good to know which problems in NP are the really tricky ones, but we don't just want to say "it's the ones we haven't found a good algorithm for". After all, I could come up with a problem (call it X) that I think needs a super-amazing algorithm. I tell the world that the best algorithm I could come up with to solve X scales badly, and so I think that X is a really tough problem. But tomorrow, maybe somebody cleverer than me invents an algorithm which solves X and is in P. So this isn't a very good definition of hard problems.

尽管如此,NP中仍有许多问题,没有人知道一个好的算法。因此,如果我能证明X是一个特定的问题:一个解决X的好算法也可以用某种迂回的方式,为NP中的所有其他问题提供一个好算法。现在人们可能更相信X是一个棘手的问题。在这种情况下,我们称X为np完全。

其他回答

上面NP完全问题的定义是正确的,但我想我可能会对它们的哲学重要性进行抒情,因为还没有人解决这个问题。

几乎你遇到的所有复杂问题都是NP完全的。这门课有一些非常基础的东西,从计算上看和容易解决的问题是不同的。它们有自己的味道,而且不难辨认。这基本上意味着任何适度复杂的算法都不可能精确地解决——调度、优化、包装、覆盖等。

But not all is lost if a problem you'll encounter is NP Complete. There is a vast and very technical field where people study approximation algorithms, which will give you guarantees for being close to the solution of an NP complete problem. Some of these are incredibly strong guarantees -- for example, for 3sat, you can get a 7/8 guarantee through a really obvious algorithm. Even better, in reality, there are some very strong heuristics, which excel at giving great answers (but no guarantees!) for these problems.

请注意,两个非常著名的问题——图同构和因式分解——不知道是P或NP。

np完全是一类问题。

P类由那些可以在多项式时间内解决的问题组成。例如,对于某个常数k,它们可以用O(nk)来求解,其中n是输入的大小。简单地说,您可以编写一个在合理时间内运行的程序。

NP类由那些在多项式时间内可验证的问题组成。也就是说,如果我们已知一个可能的解,那么我们可以在多项式时间内检验这个解是否正确。

一些例子是布尔可满足性(或SAT)问题,或哈密顿循环问题。在NP类中有很多已知的问题。

NP完全意味着问题至少和NP中的任何问题一样难。

它对计算机科学很重要,因为它已经证明了NP中的任何问题都可以转化为NP完备中的另一个问题。这意味着任何一个NP完全问题的解都是所有NP问题的解。

安全性中的许多算法依赖于NP困难问题没有已知解的事实。如果能找到解决方案,它肯定会对计算产生重大影响。

NP-Complete指的是非常具体的东西,你必须小心,否则你会弄错定义。首先,NP问题是一个是/否问题

对于答案为"是"的问题的每个实例都有多项式时间证明,即答案为"是",或者(等价地) 存在一种多项式时间算法(可能使用随机变量),如果问题实例的答案是“是”,那么它有非零概率回答“是”,如果答案是“否”,则它会在100%的时间内回答“否”。换句话说,该算法的假阴性率必须小于100%,并且没有假阳性。

问题X是np完全的,如果

X在NP中,并且 对于NP中的任何问题Y,都有一个从Y到X的“约简”:一个多项式时间算法,将Y的任何实例转换为X的实例,当且仅当X实例的答案是“是”时,Y实例的答案是“是”。

如果X是NP完全的,并且存在一个确定性的多项式时间算法,可以正确地解决X的所有实例(0%假阳性,0%假阴性),那么NP中的任何问题都可以在确定性多项式时间中解决(通过归约到X)。

So far, nobody has come up with such a deterministic polynomial-time algorithm, but nobody has proven one doesn't exist (there's a million bucks for anyone who can do either: the is the P = NP problem). That doesn't mean that you can't solve a particular instance of an NP-Complete (or NP-Hard) problem. It just means you can't have something that will work reliably on all instances of a problem the same way you could reliably sort a list of integers. You might very well be able to come up with an algorithm that will work very well on all practical instances of a NP-Hard problem.

np完全问题是一组问题,其中每一个问题都是任意的 其他np问题可以在多项式时间内约简,其解 仍然可以在多项式时间内验证。也就是说,任何NP问题都可以 转化为np完全问题。 非正式地说,NP完全问题是一个NP问题,至少是“难” 和NP中的其他问题一样。

老实说,维基百科可能是寻找答案的最佳场所。

如果NP = P,那么我们就可以比我们之前认为的更快地解决非常困难的问题。如果我们在P(多项式)时间内只解决了一个np -完全问题,那么它可以应用于np -完全范畴内的所有其他问题。