什么是np完全问题?为什么它在计算机科学中如此重要?
当前回答
基本上这个世界的问题可以分为
1)无法解决的问题 2)棘手问题 3) np问题 4) P-Problem
1)第一个是没有解决问题的办法。 2)其次是需要指数时间(即O (2 ^ n)以上)。 3)第三个是NP。 4)第四个问题很简单。
P:多项式时间问题的解。
NP:指多项式时间尚未找到一个解决方案。我们不确定有没有多项式时间的解决方案,但一旦你提供了一个解决方案,这个解决方案可以在多项式时间验证。
NP完全:是指在多项式时间中我们还没有找到一个解,但它可以在多项式时间中得到验证。NP中的NPC问题是比较困难的问题,所以如果我们能证明NPC问题有P个解,那么NP问题就能在P个解中找到。
NP困难:指多项式时间尚未找到解决方案,但它肯定无法在多项式时间内得到验证。NP难的问题超过NPC难的问题。
其他回答
NP问题:-
NP问题是一类可以在非确定多项式时间内解决的问题。 非确定性算法分为两个阶段。 非确定性猜测阶段&&非确定性验证阶段。
Np问题的类型
NP完全 NP困难
NP完全问题:-
如果问题A具有以下两个性质,则称为NP完全问题
它属于NP类。 NP中的任何其他问题都可以在多项式时间内转化为P。
一些例子:
背包问题 子集和问题 顶点覆盖问题
基本上这个世界的问题可以分为
1)无法解决的问题 2)棘手问题 3) np问题 4) P-Problem
1)第一个是没有解决问题的办法。 2)其次是需要指数时间(即O (2 ^ n)以上)。 3)第三个是NP。 4)第四个问题很简单。
P:多项式时间问题的解。
NP:指多项式时间尚未找到一个解决方案。我们不确定有没有多项式时间的解决方案,但一旦你提供了一个解决方案,这个解决方案可以在多项式时间验证。
NP完全:是指在多项式时间中我们还没有找到一个解,但它可以在多项式时间中得到验证。NP中的NPC问题是比较困难的问题,所以如果我们能证明NPC问题有P个解,那么NP问题就能在P个解中找到。
NP困难:指多项式时间尚未找到解决方案,但它肯定无法在多项式时间内得到验证。NP难的问题超过NPC难的问题。
什么是NP?
NP是所有决策问题(答案是或否的问题)的集合,其中“是”答案可以通过确定性图灵机在多项式时间(O(nk),其中n是问题大小,k是常数)验证。有时用多项式时间来定义快或快。
P是什么?
P是由确定性图灵机在多项式时间内解决的所有决策问题的集合。由于它们可以在多项式时间内求解,因此也可以在多项式时间内验证。因此P是NP的子集。
什么是np完全?
NP中的问题x也属于NP完全,当且仅当NP中的所有其他问题都可以快速地(即。在多项式时间内)转换成x。
换句话说:
x在NP中,并且 NP中的每个问题都可约为x
所以,NP完全问题的有趣之处在于,如果任何一个NP完全问题可以快速解决,那么所有NP问题都可以快速解决。
另见帖子“P=NP”是什么?为什么这是一个如此著名的问题?
什么是NP-Hard?
NP- hard是指至少和NP中最难的问题一样难的问题。注意,np完全问题也是np难的。然而,并非所有NP难问题都是NP问题(甚至是决策问题),尽管有NP作为前缀。NP-hard中的NP并不意味着非确定性多项式时间。是的,这令人困惑,但它的用法根深蒂固,不太可能改变。
NP代表非确定性多项式时间。
这意味着使用非确定性图灵机(就像常规图灵机,但也包括非确定性“选择”函数)可以在多项式时间内解决问题。基本上,解必须在多边形时间内可测试。如果是这样的话,一个已知的NP问题可以用修改输入的给定问题来解决(一个NP问题可以简化为给定问题),那么这个问题就是NP完全的。
从np完全问题中得到的主要东西是,它不能以任何已知的方式在多项式时间内解决。NP-Hard/NP-Complete是一种表明某些类型的问题在现实时间内无法解决的方法。
编辑:正如其他人所注意到的,np完全问题通常有近似解。在这种情况下,近似解通常给出一个近似界,用特殊的符号告诉我们这个近似有多接近。
据我所知
P是可以用确定性TM在多项式时间内解决的问题集。
NP是需要在多项式时间内解决非确定性TM的问题集。 这意味着我们可以用多项式时间并行检查每个实例的所有不同变量组合。如果问题是可解决的,那么至少有一个平行的TM实例会以“是”而停止。 这也意味着如果你能对变量/解做出正确的猜测,那么你只需要在多项式时间内检查它的有效性。
NP- hard是指问题比NP更难的集合。这意味着NP- hard问题比NP集中的任何问题都要难。即使使用图灵机的非确定性,这些问题也是指数级的。所以并行计算在解决这些问题时没有帮助。
NP- complete是NP和NP- hard的交集集。根据我的理解,
NP完全中的问题至少和NP集中最难的问题一样难。 所有np -完全问题的类都是等价的,即np -完全集中的一个问题可以简化为任何其他的np -完全问题。这意味着,如果任何一个np完全问题都有一个有效的解,那么所有的np完全问题都可以用相同的解来解决。
如果np -完全集中的任何问题在多项式时间内确定可解,则整个np -完全集在多项式时间内确定可解。此外,由于NP-完全问题至少与NP集中最难的问题一样难,NP集中的所有问题(等于或容易于NP-完全集中的问题)将被确定性多项式的运行时间所限制,将P集扩展到NP集中,从而得到P=NP。
如果我弄错了,请告诉我。
推荐文章
- 段树、区间树、二叉索引树和范围树之间有什么区别?
- 给定一个数字,找出下一个与原始数字具有完全相同的数字集的更高的数字
- HSL到RGB的颜色转换
- 使用Java在原语数组中查找最大/最小值
- 好的Java图算法库?
- foreach和map有区别吗?
- 什么时候我应该使用Kruskal而不是Prim(反之亦然)?
- 取一个集中在中心的随机数
- PHP中接口的意义是什么?
- 设计模式:工厂vs工厂方法vs抽象工厂
- 如何计算圆周长上的一点?
- 为什么处理排序数组比未排序数组慢?
- 从整数流中找到运行中位数
- 在日历应用程序中建模重复事件的最佳方法是什么?
- 在任何情况下,您更喜欢高大o时间复杂度算法而不是低大o时间复杂度算法吗?