我有一条从a到B的直线和一个半径为R的圆。
用什么算法来检查直线是否与圆相交?它在圆边的哪个坐标上?
我有一条从a到B的直线和一个半径为R的圆。
用什么算法来检查直线是否与圆相交?它在圆边的哪个坐标上?
当前回答
以下是我在TypeScript中的解决方案,遵循@Mizipzor建议的想法(使用投影):
/**
* Determines whether a line segment defined by a start and end point intersects with a sphere defined by a center point and a radius
* @param a the start point of the line segment
* @param b the end point of the line segment
* @param c the center point of the sphere
* @param r the radius of the sphere
*/
export function lineSphereIntersects(
a: IPoint,
b: IPoint,
c: IPoint,
r: number
): boolean {
// find the three sides of the triangle formed by the three points
const ab: number = distance(a, b);
const ac: number = distance(a, c);
const bc: number = distance(b, c);
// check to see if either ends of the line segment are inside of the sphere
if (ac < r || bc < r) {
return true;
}
// find the angle between the line segment and the center of the sphere
const numerator: number = Math.pow(ac, 2) + Math.pow(ab, 2) - Math.pow(bc, 2);
const denominator: number = 2 * ac * ab;
const cab: number = Math.acos(numerator / denominator);
// find the distance from the center of the sphere and the line segment
const cd: number = Math.sin(cab) * ac;
// if the radius is at least as long as the distance between the center and the line
if (r >= cd) {
// find the distance between the line start and the point on the line closest to
// the center of the sphere
const ad: number = Math.cos(cab) * ac;
// intersection occurs when the point on the line closest to the sphere center is
// no further away than the end of the line
return ad <= ab;
}
return false;
}
export function distance(a: IPoint, b: IPoint): number {
return Math.sqrt(
Math.pow(b.z - a.z, 2) + Math.pow(b.y - a.y, 2) + Math.pow(b.x - a.x, 2)
);
}
export interface IPoint {
x: number;
y: number;
z: number;
}
其他回答
如果你找到了圆心(因为它是3D的,我想你是指球体而不是圆)和直线之间的距离,然后检查这个距离是否小于可以做到这一点的半径。
碰撞点显然是直线和球面之间最近的点(当你计算球面和直线之间的距离时,会计算出这个点)
点与线之间的距离: http://mathworld.wolfram.com/Point-LineDistance3-Dimensional.html
' VB.NET - Code
Function CheckLineSegmentCircleIntersection(x1 As Double, y1 As Double, x2 As Double, y2 As Double, xc As Double, yc As Double, r As Double) As Boolean
Static xd As Double = 0.0F
Static yd As Double = 0.0F
Static t As Double = 0.0F
Static d As Double = 0.0F
Static dx_2_1 As Double = 0.0F
Static dy_2_1 As Double = 0.0F
dx_2_1 = x2 - x1
dy_2_1 = y2 - y1
t = ((yc - y1) * dy_2_1 + (xc - x1) * dx_2_1) / (dy_2_1 * dy_2_1 + dx_2_1 * dx_2_1)
If 0 <= t And t <= 1 Then
xd = x1 + t * dx_2_1
yd = y1 + t * dy_2_1
d = Math.Sqrt((xd - xc) * (xd - xc) + (yd - yc) * (yd - yc))
Return d <= r
Else
d = Math.Sqrt((xc - x1) * (xc - x1) + (yc - y1) * (yc - y1))
If d <= r Then
Return True
Else
d = Math.Sqrt((xc - x2) * (xc - x2) + (yc - y2) * (yc - y2))
If d <= r Then
Return True
Else
Return False
End If
End If
End If
End Function
圆真的是一个坏人:)所以一个好办法是避免真正的圆,如果可以的话。如果你正在为游戏做碰撞检查,你可以进行一些简化,只做3个点积,并进行一些比较。
我称之为“胖点”或“瘦圈”。它是平行于线段方向上半径为0的椭圆。而是垂直于线段方向的全半径
首先,我会考虑重命名和切换坐标系统,以避免过多的数据:
s0s1 = B-A;
s0qp = C-A;
rSqr = r*r;
其次,hvec2f中的索引h意味着vector必须支持水平操作,如dot()/det()。这意味着它的组件被放置在一个单独的xmm寄存器中,以避免shuffle /hadd'ing/hsub'ing。现在我们开始,最简单的2D游戏碰撞检测的最佳性能版本:
bool fat_point_collides_segment(const hvec2f& s0qp, const hvec2f& s0s1, const float& rSqr) {
auto a = dot(s0s1, s0s1);
//if( a != 0 ) // if you haven't zero-length segments omit this, as it would save you 1 _mm_comineq_ss() instruction and 1 memory fetch
{
auto b = dot(s0s1, s0qp);
auto t = b / a; // length of projection of s0qp onto s0s1
//std::cout << "t = " << t << "\n";
if ((t >= 0) && (t <= 1)) //
{
auto c = dot(s0qp, s0qp);
auto r2 = c - a * t * t;
return (r2 <= rSqr); // true if collides
}
}
return false;
}
我怀疑你能进一步优化它。我正在用它进行神经网络驱动的赛车碰撞检测,处理数百万个迭代步骤。
如果直线的坐标为A.x, A.y和B.x, B.y,圆心为C.x, C.y,则直线公式为:
x = A.x * t + B.x * (1 - t)
y = A.y * t + B.y * (1 - t)
0 < = t < = 1
这个圆是
(C.x - x)²+ (C.y - y)²= R²
如果你把直线的x和y公式代入圆公式,你会得到一个t的二阶方程,它的解是交点(如果有的话)。如果你得到的t小于0或大于1,那么它不是一个解,但它表明这条线“指向”圆的方向。
好吧,我不会给你代码,但既然你已经标记了这个算法,我认为这对你来说无关紧要。 首先,你要得到一个垂直于这条直线的向量。
y = ax + c是一个未知变量c是未知变量 为了解决这个问题,计算直线经过圆心时的值。
也就是说, 将圆心的位置代入直线方程,解出c。 然后计算原直线与其法线的交点。
这样就能得到直线上离圆最近的点。 计算该点到圆中心之间的距离(使用矢量的大小)。 如果这个小于圆的半径,看,我们有一个交点!