我有一条从a到B的直线和一个半径为R的圆。
用什么算法来检查直线是否与圆相交?它在圆边的哪个坐标上?
我有一条从a到B的直线和一个半径为R的圆。
用什么算法来检查直线是否与圆相交?它在圆边的哪个坐标上?
当前回答
另一个在c#(部分圆类)。 经过测试,工作就像一个魅力。
public class Circle : IEquatable<Circle>
{
// ******************************************************************
// The center of a circle
private Point _center;
// The radius of a circle
private double _radius;
// ******************************************************************
/// <summary>
/// Find all intersections (0, 1, 2) of the circle with a line defined by its 2 points.
/// Using: http://math.stackexchange.com/questions/228841/how-do-i-calculate-the-intersections-of-a-straight-line-and-a-circle
/// Note: p is the Center.X and q is Center.Y
/// </summary>
/// <param name="linePoint1"></param>
/// <param name="linePoint2"></param>
/// <returns></returns>
public List<Point> GetIntersections(Point linePoint1, Point linePoint2)
{
List<Point> intersections = new List<Point>();
double dx = linePoint2.X - linePoint1.X;
if (dx.AboutEquals(0)) // Straight vertical line
{
if (linePoint1.X.AboutEquals(Center.X - Radius) || linePoint1.X.AboutEquals(Center.X + Radius))
{
Point pt = new Point(linePoint1.X, Center.Y);
intersections.Add(pt);
}
else if (linePoint1.X > Center.X - Radius && linePoint1.X < Center.X + Radius)
{
double x = linePoint1.X - Center.X;
Point pt = new Point(linePoint1.X, Center.Y + Math.Sqrt(Radius * Radius - (x * x)));
intersections.Add(pt);
pt = new Point(linePoint1.X, Center.Y - Math.Sqrt(Radius * Radius - (x * x)));
intersections.Add(pt);
}
return intersections;
}
// Line function (y = mx + b)
double dy = linePoint2.Y - linePoint1.Y;
double m = dy / dx;
double b = linePoint1.Y - m * linePoint1.X;
double A = m * m + 1;
double B = 2 * (m * b - m * _center.Y - Center.X);
double C = Center.X * Center.X + Center.Y * Center.Y - Radius * Radius - 2 * b * Center.Y + b * b;
double discriminant = B * B - 4 * A * C;
if (discriminant < 0)
{
return intersections; // there is no intersections
}
if (discriminant.AboutEquals(0)) // Tangeante (touch on 1 point only)
{
double x = -B / (2 * A);
double y = m * x + b;
intersections.Add(new Point(x, y));
}
else // Secant (touch on 2 points)
{
double x = (-B + Math.Sqrt(discriminant)) / (2 * A);
double y = m * x + b;
intersections.Add(new Point(x, y));
x = (-B - Math.Sqrt(discriminant)) / (2 * A);
y = m * x + b;
intersections.Add(new Point(x, y));
}
return intersections;
}
// ******************************************************************
// Get the center
[XmlElement("Center")]
public Point Center
{
get { return _center; }
set
{
_center = value;
}
}
// ******************************************************************
// Get the radius
[XmlElement]
public double Radius
{
get { return _radius; }
set { _radius = value; }
}
//// ******************************************************************
//[XmlArrayItemAttribute("DoublePoint")]
//public List<Point> Coordinates
//{
// get { return _coordinates; }
//}
// ******************************************************************
// Construct a circle without any specification
public Circle()
{
_center.X = 0;
_center.Y = 0;
_radius = 0;
}
// ******************************************************************
// Construct a circle without any specification
public Circle(double radius)
{
_center.X = 0;
_center.Y = 0;
_radius = radius;
}
// ******************************************************************
// Construct a circle with the specified circle
public Circle(Circle circle)
{
_center = circle._center;
_radius = circle._radius;
}
// ******************************************************************
// Construct a circle with the specified center and radius
public Circle(Point center, double radius)
{
_center = center;
_radius = radius;
}
// ******************************************************************
// Construct a circle based on one point
public Circle(Point center)
{
_center = center;
_radius = 0;
}
// ******************************************************************
// Construct a circle based on two points
public Circle(Point p1, Point p2)
{
Circle2Points(p1, p2);
}
要求:
using System;
namespace Mathematic
{
public static class DoubleExtension
{
// ******************************************************************
// Base on Hans Passant Answer on:
// http://stackoverflow.com/questions/2411392/double-epsilon-for-equality-greater-than-less-than-less-than-or-equal-to-gre
/// <summary>
/// Compare two double taking in account the double precision potential error.
/// Take care: truncation errors accumulate on calculation. More you do, more you should increase the epsilon.
public static bool AboutEquals(this double value1, double value2)
{
if (double.IsPositiveInfinity(value1))
return double.IsPositiveInfinity(value2);
if (double.IsNegativeInfinity(value1))
return double.IsNegativeInfinity(value2);
if (double.IsNaN(value1))
return double.IsNaN(value2);
double epsilon = Math.Max(Math.Abs(value1), Math.Abs(value2)) * 1E-15;
return Math.Abs(value1 - value2) <= epsilon;
}
// ******************************************************************
// Base on Hans Passant Answer on:
// http://stackoverflow.com/questions/2411392/double-epsilon-for-equality-greater-than-less-than-less-than-or-equal-to-gre
/// <summary>
/// Compare two double taking in account the double precision potential error.
/// Take care: truncation errors accumulate on calculation. More you do, more you should increase the epsilon.
/// You get really better performance when you can determine the contextual epsilon first.
/// </summary>
/// <param name="value1"></param>
/// <param name="value2"></param>
/// <param name="precalculatedContextualEpsilon"></param>
/// <returns></returns>
public static bool AboutEquals(this double value1, double value2, double precalculatedContextualEpsilon)
{
if (double.IsPositiveInfinity(value1))
return double.IsPositiveInfinity(value2);
if (double.IsNegativeInfinity(value1))
return double.IsNegativeInfinity(value2);
if (double.IsNaN(value1))
return double.IsNaN(value2);
return Math.Abs(value1 - value2) <= precalculatedContextualEpsilon;
}
// ******************************************************************
public static double GetContextualEpsilon(this double biggestPossibleContextualValue)
{
return biggestPossibleContextualValue * 1E-15;
}
// ******************************************************************
/// <summary>
/// Mathlab equivalent
/// </summary>
/// <param name="dividend"></param>
/// <param name="divisor"></param>
/// <returns></returns>
public static double Mod(this double dividend, double divisor)
{
return dividend - System.Math.Floor(dividend / divisor) * divisor;
}
// ******************************************************************
}
}
其他回答
我会用这个算法来计算点(圆心)和线(线AB)之间的距离。这可以用来确定直线与圆的交点。
假设有点A B c, Ax和Ay是A点的x和y分量。B和c也是一样,标量R是圆半径。
该算法要求A B C是不同的点,且R不为0。
这是算法
// compute the euclidean distance between A and B
LAB = sqrt( (Bx-Ax)²+(By-Ay)² )
// compute the direction vector D from A to B
Dx = (Bx-Ax)/LAB
Dy = (By-Ay)/LAB
// the equation of the line AB is x = Dx*t + Ax, y = Dy*t + Ay with 0 <= t <= LAB.
// compute the distance between the points A and E, where
// E is the point of AB closest the circle center (Cx, Cy)
t = Dx*(Cx-Ax) + Dy*(Cy-Ay)
// compute the coordinates of the point E
Ex = t*Dx+Ax
Ey = t*Dy+Ay
// compute the euclidean distance between E and C
LEC = sqrt((Ex-Cx)²+(Ey-Cy)²)
// test if the line intersects the circle
if( LEC < R )
{
// compute distance from t to circle intersection point
dt = sqrt( R² - LEC²)
// compute first intersection point
Fx = (t-dt)*Dx + Ax
Fy = (t-dt)*Dy + Ay
// compute second intersection point
Gx = (t+dt)*Dx + Ax
Gy = (t+dt)*Dy + Ay
}
// else test if the line is tangent to circle
else if( LEC == R )
// tangent point to circle is E
else
// line doesn't touch circle
这里你需要一些数学知识:
假设A = (Xa, Ya), B = (Xb, Yb), C = (Xc, Yc)。从A到B的直线上的任意一点都有坐标(*Xa + (1-)Xb, * ya + (1-)*Yb) = P
如果点P的距离是R到C,它一定在圆上。你想要的是解决
distance(P, C) = R
这是
(alpha*Xa + (1-alpha)*Xb)^2 + (alpha*Ya + (1-alpha)*Yb)^2 = R^2
alpha^2*Xa^2 + alpha^2*Xb^2 - 2*alpha*Xb^2 + Xb^2 + alpha^2*Ya^2 + alpha^2*Yb^2 - 2*alpha*Yb^2 + Yb^2=R^2
(Xa^2 + Xb^2 + Ya^2 + Yb^2)*alpha^2 - 2*(Xb^2 + Yb^2)*alpha + (Xb^2 + Yb^2 - R^2) = 0
如果你将abc公式应用到这个方程来求解,并使用alpha的解来计算P的坐标,你会得到交点,如果存在的话。
如果你找到了圆心(因为它是3D的,我想你是指球体而不是圆)和直线之间的距离,然后检查这个距离是否小于可以做到这一点的半径。
碰撞点显然是直线和球面之间最近的点(当你计算球面和直线之间的距离时,会计算出这个点)
点与线之间的距离: http://mathworld.wolfram.com/Point-LineDistance3-Dimensional.html
我发现这个解决方案似乎比其他一些解决方案更容易遵循。
采取:
p1 and p2 as the points for the line, and
c as the center point for the circle and r for the radius
我可以用斜截式来解直线方程。但是,我不想处理以c为点的复杂方程,所以我只是平移了坐标系使圆在(0,0)处
p3 = p1 - c
p4 = p2 - c
顺便说一下,当我相互减分的时候,我是在减去x再减去y,然后把它们放到一个新的点里,以防有人不知道。
不管怎样,我现在解出p3和p4的直线方程
m = (p4_y - p3_y) / (p4_x - p3) (the underscore is an attempt at subscript)
y = mx + b
y - mx = b (just put in a point for x and y, and insert the m we found)
好的。现在我需要让这两个方程相等。首先我需要解圆的x方程
x^2 + y^2 = r^2
y^2 = r^2 - x^2
y = sqrt(r^2 - x^2)
然后我让它们相等:
mx + b = sqrt(r^2 - x^2)
求二次方程(0 = ax^2 + bx + c)
(mx + b)^2 = r^2 - x^2
(mx)^2 + 2mbx + b^2 = r^2 - x^2
0 = m^2 * x^2 + x^2 + 2mbx + b^2 - r^2
0 = (m^2 + 1) * x^2 + 2mbx + b^2 - r^2
现在我有了a b c。
a = m^2 + 1
b = 2mb
c = b^2 - r^2
我把这个代入二次公式
(-b ± sqrt(b^2 - 4ac)) / 2a
用值代入,然后尽可能简化:
(-2mb ± sqrt(b^2 - 4ac)) / 2a
(-2mb ± sqrt((-2mb)^2 - 4(m^2 + 1)(b^2 - r^2))) / 2(m^2 + 1)
(-2mb ± sqrt(4m^2 * b^2 - 4(m^2 * b^2 - m^2 * r^2 + b^2 - r^2))) / 2m^2 + 2
(-2mb ± sqrt(4 * (m^2 * b^2 - (m^2 * b^2 - m^2 * r^2 + b^2 - r^2))))/ 2m^2 + 2
(-2mb ± sqrt(4 * (m^2 * b^2 - m^2 * b^2 + m^2 * r^2 - b^2 + r^2)))/ 2m^2 + 2
(-2mb ± sqrt(4 * (m^2 * r^2 - b^2 + r^2)))/ 2m^2 + 2
(-2mb ± sqrt(4) * sqrt(m^2 * r^2 - b^2 + r^2))/ 2m^2 + 2
(-2mb ± 2 * sqrt(m^2 * r^2 - b^2 + r^2))/ 2m^2 + 2
(-2mb ± 2 * sqrt(m^2 * r^2 + r^2 - b^2))/ 2m^2 + 2
(-2mb ± 2 * sqrt(r^2 * (m^2 + 1) - b^2))/ 2m^2 + 2
这几乎是化简的极限了。最后,分离出带有±的方程:
(-2mb + 2 * sqrt(r^2 * (m^2 + 1) - b^2))/ 2m^2 + 2 or
(-2mb - 2 * sqrt(r^2 * (m^2 + 1) - b^2))/ 2m^2 + 2
然后简单地将这两个方程的结果代入mx + b中的x。为了清晰起见,我写了一些JavaScript代码来演示如何使用这个:
function interceptOnCircle(p1,p2,c,r){
//p1 is the first line point
//p2 is the second line point
//c is the circle's center
//r is the circle's radius
var p3 = {x:p1.x - c.x, y:p1.y - c.y} //shifted line points
var p4 = {x:p2.x - c.x, y:p2.y - c.y}
var m = (p4.y - p3.y) / (p4.x - p3.x); //slope of the line
var b = p3.y - m * p3.x; //y-intercept of line
var underRadical = Math.pow((Math.pow(r,2)*(Math.pow(m,2)+1)),2)-Math.pow(b,2)); //the value under the square root sign
if (underRadical < 0){
//line completely missed
return false;
} else {
var t1 = (-2*m*b+2*Math.sqrt(underRadical))/(2 * Math.pow(m,2) + 2); //one of the intercept x's
var t2 = (-2*m*b-2*Math.sqrt(underRadical))/(2 * Math.pow(m,2) + 2); //other intercept's x
var i1 = {x:t1,y:m*t1+b} //intercept point 1
var i2 = {x:t2,y:m*t2+b} //intercept point 2
return [i1,i2];
}
}
我希望这能有所帮助!
附注:如果任何人发现任何错误或有任何建议,请评论。我是新手,欢迎大家的帮助/建议。
我知道自从这个帖子被打开以来已经有一段时间了。根据chmike给出的答案,经Aqib Mumtaz改进。他们给出了一个很好的答案,但只适用于无限线,就像Aqib说的那样。所以我添加了一些比较来知道线段是否与圆接触,我用Python写的。
def LineIntersectCircle(c, r, p1, p2):
#p1 is the first line point
#p2 is the second line point
#c is the circle's center
#r is the circle's radius
p3 = [p1[0]-c[0], p1[1]-c[1]]
p4 = [p2[0]-c[0], p2[1]-c[1]]
m = (p4[1] - p3[1]) / (p4[0] - p3[0])
b = p3[1] - m * p3[0]
underRadical = math.pow(r,2)*math.pow(m,2) + math.pow(r,2) - math.pow(b,2)
if (underRadical < 0):
print("NOT")
else:
t1 = (-2*m*b+2*math.sqrt(underRadical)) / (2 * math.pow(m,2) + 2)
t2 = (-2*m*b-2*math.sqrt(underRadical)) / (2 * math.pow(m,2) + 2)
i1 = [t1+c[0], m * t1 + b + c[1]]
i2 = [t2+c[0], m * t2 + b + c[1]]
if p1[0] > p2[0]: #Si el punto 1 es mayor al 2 en X
if (i1[0] < p1[0]) and (i1[0] > p2[0]): #Si el punto iX esta entre 2 y 1 en X
if p1[1] > p2[1]: #Si el punto 1 es mayor al 2 en Y
if (i1[1] < p1[1]) and (i1[1] > p2[1]): #Si el punto iy esta entre 2 y 1
print("Intersection")
if p1[1] < p2[1]: #Si el punto 2 es mayo al 2 en Y
if (i1[1] > p1[1]) and (i1[1] < p2[1]): #Si el punto iy esta entre 1 y 2
print("Intersection")
if p1[0] < p2[0]: #Si el punto 2 es mayor al 1 en X
if (i1[0] > p1[0]) and (i1[0] < p2[0]): #Si el punto iX esta entre 1 y 2 en X
if p1[1] > p2[1]: #Si el punto 1 es mayor al 2 en Y
if (i1[1] < p1[1]) and (i1[1] > p2[1]): #Si el punto iy esta entre 2 y 1
print("Intersection")
if p1[1] < p2[1]: #Si el punto 2 es mayo al 2 en Y
if (i1[1] > p1[1]) and (i1[1] < p2[1]): #Si el punto iy esta entre 1 y 2
print("Intersection")
if p1[0] > p2[0]: #Si el punto 1 es mayor al 2 en X
if (i2[0] < p1[0]) and (i2[0] > p2[0]): #Si el punto iX esta entre 2 y 1 en X
if p1[1] > p2[1]: #Si el punto 1 es mayor al 2 en Y
if (i2[1] < p1[1]) and (i2[1] > p2[1]): #Si el punto iy esta entre 2 y 1
print("Intersection")
if p1[1] < p2[1]: #Si el punto 2 es mayo al 2 en Y
if (i2[1] > p1[1]) and (i2[1] < p2[1]): #Si el punto iy esta entre 1 y 2
print("Intersection")
if p1[0] < p2[0]: #Si el punto 2 es mayor al 1 en X
if (i2[0] > p1[0]) and (i2[0] < p2[0]): #Si el punto iX esta entre 1 y 2 en X
if p1[1] > p2[1]: #Si el punto 1 es mayor al 2 en Y
if (i2[1] < p1[1]) and (i2[1] > p2[1]): #Si el punto iy esta entre 2 y 1
print("Intersection")
if p1[1] < p2[1]: #Si el punto 2 es mayo al 2 en Y
if (i2[1] > p1[1]) and (i2[1] < p2[1]): #Si el punto iy esta entre 1 y 2
print("Intersection")