我有一条从a到B的直线和一个半径为R的圆。

用什么算法来检查直线是否与圆相交?它在圆边的哪个坐标上?


当前回答

这里你需要一些数学知识:

假设A = (Xa, Ya), B = (Xb, Yb), C = (Xc, Yc)。从A到B的直线上的任意一点都有坐标(*Xa + (1-)Xb, * ya + (1-)*Yb) = P

如果点P的距离是R到C,它一定在圆上。你想要的是解决

distance(P, C) = R

这是

(alpha*Xa + (1-alpha)*Xb)^2 + (alpha*Ya + (1-alpha)*Yb)^2 = R^2
alpha^2*Xa^2 + alpha^2*Xb^2 - 2*alpha*Xb^2 + Xb^2 + alpha^2*Ya^2 + alpha^2*Yb^2 - 2*alpha*Yb^2 + Yb^2=R^2
(Xa^2 + Xb^2 + Ya^2 + Yb^2)*alpha^2 - 2*(Xb^2 + Yb^2)*alpha + (Xb^2 + Yb^2 - R^2) = 0

如果你将abc公式应用到这个方程来求解,并使用alpha的解来计算P的坐标,你会得到交点,如果存在的话。

其他回答

另一个在c#(部分圆类)。 经过测试,工作就像一个魅力。

public class Circle : IEquatable<Circle>
{
    // ******************************************************************
    // The center of a circle
    private Point _center;
    // The radius of a circle
    private double _radius;

   // ******************************************************************
    /// <summary>
    /// Find all intersections (0, 1, 2) of the circle with a line defined by its 2 points.
    /// Using: http://math.stackexchange.com/questions/228841/how-do-i-calculate-the-intersections-of-a-straight-line-and-a-circle
    /// Note: p is the Center.X and q is Center.Y
    /// </summary>
    /// <param name="linePoint1"></param>
    /// <param name="linePoint2"></param>
    /// <returns></returns>
    public List<Point> GetIntersections(Point linePoint1, Point linePoint2)
    {
        List<Point> intersections = new List<Point>();

        double dx = linePoint2.X - linePoint1.X;

        if (dx.AboutEquals(0)) // Straight vertical line
        {
            if (linePoint1.X.AboutEquals(Center.X - Radius) || linePoint1.X.AboutEquals(Center.X + Radius))
            {
                Point pt = new Point(linePoint1.X, Center.Y);
                intersections.Add(pt);
            }
            else if (linePoint1.X > Center.X - Radius && linePoint1.X < Center.X + Radius)
            {
                double x = linePoint1.X - Center.X;

                Point pt = new Point(linePoint1.X, Center.Y + Math.Sqrt(Radius * Radius - (x * x)));
                intersections.Add(pt);

                pt = new Point(linePoint1.X, Center.Y - Math.Sqrt(Radius * Radius - (x * x)));
                intersections.Add(pt);
            }

            return intersections;
        }

        // Line function (y = mx + b)
        double dy = linePoint2.Y - linePoint1.Y;
        double m = dy / dx;
        double b = linePoint1.Y - m * linePoint1.X;

        double A = m * m + 1;
        double B = 2 * (m * b - m * _center.Y - Center.X);
        double C = Center.X * Center.X + Center.Y * Center.Y - Radius * Radius - 2 * b * Center.Y + b * b;

        double discriminant = B * B - 4 * A * C;

        if (discriminant < 0)
        {
            return intersections; // there is no intersections
        }

        if (discriminant.AboutEquals(0)) // Tangeante (touch on 1 point only)
        {
            double x = -B / (2 * A);
            double y = m * x + b;

            intersections.Add(new Point(x, y));
        }
        else // Secant (touch on 2 points)
        {
            double x = (-B + Math.Sqrt(discriminant)) / (2 * A);
            double y = m * x + b;
            intersections.Add(new Point(x, y));

            x = (-B - Math.Sqrt(discriminant)) / (2 * A);
            y = m * x + b;
            intersections.Add(new Point(x, y));
        }

        return intersections;
    }

    // ******************************************************************
    // Get the center
    [XmlElement("Center")]
    public Point Center
    {
        get { return _center; }
        set
        {
            _center = value;
        }
    }

    // ******************************************************************
    // Get the radius
    [XmlElement]
    public double Radius
    {
        get { return _radius; }
        set { _radius = value; }
    }

    //// ******************************************************************
    //[XmlArrayItemAttribute("DoublePoint")]
    //public List<Point> Coordinates
    //{
    //    get { return _coordinates; }
    //}

    // ******************************************************************
    // Construct a circle without any specification
    public Circle()
    {
        _center.X = 0;
        _center.Y = 0;
        _radius = 0;
    }

    // ******************************************************************
    // Construct a circle without any specification
    public Circle(double radius)
    {
        _center.X = 0;
        _center.Y = 0;
        _radius = radius;
    }

    // ******************************************************************
    // Construct a circle with the specified circle
    public Circle(Circle circle)
    {
        _center = circle._center;
        _radius = circle._radius;
    }

    // ******************************************************************
    // Construct a circle with the specified center and radius
    public Circle(Point center, double radius)
    {
        _center = center;
        _radius = radius;
    }

    // ******************************************************************
    // Construct a circle based on one point
    public Circle(Point center)
    {
        _center = center;
        _radius = 0;
    }

    // ******************************************************************
    // Construct a circle based on two points
    public Circle(Point p1, Point p2)
    {
        Circle2Points(p1, p2);
    }

要求:

using System;

namespace Mathematic
{
    public static class DoubleExtension
    {
        // ******************************************************************
        // Base on Hans Passant Answer on:
        // http://stackoverflow.com/questions/2411392/double-epsilon-for-equality-greater-than-less-than-less-than-or-equal-to-gre

        /// <summary>
        /// Compare two double taking in account the double precision potential error.
        /// Take care: truncation errors accumulate on calculation. More you do, more you should increase the epsilon.
        public static bool AboutEquals(this double value1, double value2)
        {
            if (double.IsPositiveInfinity(value1))
                return double.IsPositiveInfinity(value2);

            if (double.IsNegativeInfinity(value1))
                return double.IsNegativeInfinity(value2);

            if (double.IsNaN(value1))
                return double.IsNaN(value2);

            double epsilon = Math.Max(Math.Abs(value1), Math.Abs(value2)) * 1E-15;
            return Math.Abs(value1 - value2) <= epsilon;
        }

        // ******************************************************************
        // Base on Hans Passant Answer on:
        // http://stackoverflow.com/questions/2411392/double-epsilon-for-equality-greater-than-less-than-less-than-or-equal-to-gre

        /// <summary>
        /// Compare two double taking in account the double precision potential error.
        /// Take care: truncation errors accumulate on calculation. More you do, more you should increase the epsilon.
        /// You get really better performance when you can determine the contextual epsilon first.
        /// </summary>
        /// <param name="value1"></param>
        /// <param name="value2"></param>
        /// <param name="precalculatedContextualEpsilon"></param>
        /// <returns></returns>
        public static bool AboutEquals(this double value1, double value2, double precalculatedContextualEpsilon)
        {
            if (double.IsPositiveInfinity(value1))
                return double.IsPositiveInfinity(value2);

            if (double.IsNegativeInfinity(value1))
                return double.IsNegativeInfinity(value2);

            if (double.IsNaN(value1))
                return double.IsNaN(value2);

            return Math.Abs(value1 - value2) <= precalculatedContextualEpsilon;
        }

        // ******************************************************************
        public static double GetContextualEpsilon(this double biggestPossibleContextualValue)
        {
            return biggestPossibleContextualValue * 1E-15;
        }

        // ******************************************************************
        /// <summary>
        /// Mathlab equivalent
        /// </summary>
        /// <param name="dividend"></param>
        /// <param name="divisor"></param>
        /// <returns></returns>
        public static double Mod(this double dividend, double divisor)
        {
            return dividend - System.Math.Floor(dividend / divisor) * divisor;
        }

        // ******************************************************************
    }
}

只是这个线程的一个补充… 下面是pahlevan发布的代码版本,但针对c# /XNA,并做了一些整理:

    /// <summary>
    /// Intersects a line and a circle.
    /// </summary>
    /// <param name="location">the location of the circle</param>
    /// <param name="radius">the radius of the circle</param>
    /// <param name="lineFrom">the starting point of the line</param>
    /// <param name="lineTo">the ending point of the line</param>
    /// <returns>true if the line and circle intersect each other</returns>
    public static bool IntersectLineCircle(Vector2 location, float radius, Vector2 lineFrom, Vector2 lineTo)
    {
        float ab2, acab, h2;
        Vector2 ac = location - lineFrom;
        Vector2 ab = lineTo - lineFrom;
        Vector2.Dot(ref ab, ref ab, out ab2);
        Vector2.Dot(ref ac, ref ab, out acab);
        float t = acab / ab2;

        if (t < 0)
            t = 0;
        else if (t > 1)
            t = 1;

        Vector2 h = ((ab * t) + lineFrom) - location;
        Vector2.Dot(ref h, ref h, out h2);

        return (h2 <= (radius * radius));
    }

我会用这个算法来计算点(圆心)和线(线AB)之间的距离。这可以用来确定直线与圆的交点。

假设有点A B c, Ax和Ay是A点的x和y分量。B和c也是一样,标量R是圆半径。

该算法要求A B C是不同的点,且R不为0。

这是算法

// compute the euclidean distance between A and B
LAB = sqrt( (Bx-Ax)²+(By-Ay)² )

// compute the direction vector D from A to B
Dx = (Bx-Ax)/LAB
Dy = (By-Ay)/LAB

// the equation of the line AB is x = Dx*t + Ax, y = Dy*t + Ay with 0 <= t <= LAB.

// compute the distance between the points A and E, where
// E is the point of AB closest the circle center (Cx, Cy)
t = Dx*(Cx-Ax) + Dy*(Cy-Ay)    

// compute the coordinates of the point E
Ex = t*Dx+Ax
Ey = t*Dy+Ay

// compute the euclidean distance between E and C
LEC = sqrt((Ex-Cx)²+(Ey-Cy)²)

// test if the line intersects the circle
if( LEC < R )
{
    // compute distance from t to circle intersection point
    dt = sqrt( R² - LEC²)

    // compute first intersection point
    Fx = (t-dt)*Dx + Ax
    Fy = (t-dt)*Dy + Ay

    // compute second intersection point
    Gx = (t+dt)*Dx + Ax
    Gy = (t+dt)*Dy + Ay
}

// else test if the line is tangent to circle
else if( LEC == R )
    // tangent point to circle is E

else
    // line doesn't touch circle

圆真的是一个坏人:)所以一个好办法是避免真正的圆,如果可以的话。如果你正在为游戏做碰撞检查,你可以进行一些简化,只做3个点积,并进行一些比较。

我称之为“胖点”或“瘦圈”。它是平行于线段方向上半径为0的椭圆。而是垂直于线段方向的全半径

首先,我会考虑重命名和切换坐标系统,以避免过多的数据:

s0s1 = B-A;
s0qp = C-A;
rSqr = r*r;

其次,hvec2f中的索引h意味着vector必须支持水平操作,如dot()/det()。这意味着它的组件被放置在一个单独的xmm寄存器中,以避免shuffle /hadd'ing/hsub'ing。现在我们开始,最简单的2D游戏碰撞检测的最佳性能版本:

bool fat_point_collides_segment(const hvec2f& s0qp, const hvec2f& s0s1, const float& rSqr) {
    auto a = dot(s0s1, s0s1);
    //if( a != 0 ) // if you haven't zero-length segments omit this, as it would save you 1 _mm_comineq_ss() instruction and 1 memory fetch
    {
        auto b = dot(s0s1, s0qp);
        auto t = b / a; // length of projection of s0qp onto s0s1
        //std::cout << "t = " << t << "\n";
        if ((t >= 0) && (t <= 1)) // 
        {
            auto c = dot(s0qp, s0qp);
            auto r2 = c - a * t * t;
            return (r2 <= rSqr); // true if collides
        }
    }   
    return false;
}

我怀疑你能进一步优化它。我正在用它进行神经网络驱动的赛车碰撞检测,处理数百万个迭代步骤。

似乎没人考虑投影,我是不是完全跑题了?

将向量AC投影到AB上,投影的向量AD就得到了新的点D。 如果D和C之间的距离小于(或等于)R,我们有一个交点。

是这样的:

社区编辑:

对于稍后无意中看到这篇文章并想知道如何实现这样一个算法的人来说,这里是一个使用常见向量操作函数用JavaScript编写的通用实现。

/**
 * Returns the distance from line segment AB to point C
 */
function distanceSegmentToPoint(A, B, C) {
    // Compute vectors AC and AB
    const AC = sub(C, A);
    const AB = sub(B, A);

    // Get point D by taking the projection of AC onto AB then adding the offset of A
    const D = add(proj(AC, AB), A);

    const AD = sub(D, A);
    // D might not be on AB so calculate k of D down AB (aka solve AD = k * AB)
    // We can use either component, but choose larger value to reduce the chance of dividing by zero
    const k = Math.abs(AB.x) > Math.abs(AB.y) ? AD.x / AB.x : AD.y / AB.y;

    // Check if D is off either end of the line segment
    if (k <= 0.0) {
        return Math.sqrt(hypot2(C, A));
    } else if (k >= 1.0) {
        return Math.sqrt(hypot2(C, B));
    }

    return Math.sqrt(hypot2(C, D));
}

对于这个实现,我使用了两个常见的矢量操作函数,无论您在什么环境中工作,都可能已经提供了这些函数。但是,如果您还没有这些可用的功能,下面介绍如何实现它们。

// Define some common functions for working with vectors
const add = (a, b) => ({x: a.x + b.x, y: a.y + b.y});
const sub = (a, b) => ({x: a.x - b.x, y: a.y - b.y});
const dot = (a, b) => a.x * b.x + a.y * b.y;
const hypot2 = (a, b) => dot(sub(a, b), sub(a, b));

// Function for projecting some vector a onto b
function proj(a, b) {
    const k = dot(a, b) / dot(b, b);
    return {x: k * b.x, y: k * b.y};
}