我有一条从a到B的直线和一个半径为R的圆。
用什么算法来检查直线是否与圆相交?它在圆边的哪个坐标上?
我有一条从a到B的直线和一个半径为R的圆。
用什么算法来检查直线是否与圆相交?它在圆边的哪个坐标上?
当前回答
这个Java函数返回一个DVec2对象。它用DVec2表示圆心,用DVec2表示半径,用Line表示直线。
public static DVec2 CircLine(DVec2 C, double r, Line line)
{
DVec2 A = line.p1;
DVec2 B = line.p2;
DVec2 P;
DVec2 AC = new DVec2( C );
AC.sub(A);
DVec2 AB = new DVec2( B );
AB.sub(A);
double ab2 = AB.dot(AB);
double acab = AC.dot(AB);
double t = acab / ab2;
if (t < 0.0)
t = 0.0;
else if (t > 1.0)
t = 1.0;
//P = A + t * AB;
P = new DVec2( AB );
P.mul( t );
P.add( A );
DVec2 H = new DVec2( P );
H.sub( C );
double h2 = H.dot(H);
double r2 = r * r;
if(h2 > r2)
return null;
else
return P;
}
其他回答
我会用这个算法来计算点(圆心)和线(线AB)之间的距离。这可以用来确定直线与圆的交点。
假设有点A B c, Ax和Ay是A点的x和y分量。B和c也是一样,标量R是圆半径。
该算法要求A B C是不同的点,且R不为0。
这是算法
// compute the euclidean distance between A and B
LAB = sqrt( (Bx-Ax)²+(By-Ay)² )
// compute the direction vector D from A to B
Dx = (Bx-Ax)/LAB
Dy = (By-Ay)/LAB
// the equation of the line AB is x = Dx*t + Ax, y = Dy*t + Ay with 0 <= t <= LAB.
// compute the distance between the points A and E, where
// E is the point of AB closest the circle center (Cx, Cy)
t = Dx*(Cx-Ax) + Dy*(Cy-Ay)
// compute the coordinates of the point E
Ex = t*Dx+Ax
Ey = t*Dy+Ay
// compute the euclidean distance between E and C
LEC = sqrt((Ex-Cx)²+(Ey-Cy)²)
// test if the line intersects the circle
if( LEC < R )
{
// compute distance from t to circle intersection point
dt = sqrt( R² - LEC²)
// compute first intersection point
Fx = (t-dt)*Dx + Ax
Fy = (t-dt)*Dy + Ay
// compute second intersection point
Gx = (t+dt)*Dx + Ax
Gy = (t+dt)*Dy + Ay
}
// else test if the line is tangent to circle
else if( LEC == R )
// tangent point to circle is E
else
// line doesn't touch circle
采取
E是射线的起点, L是射线的端点, C是你测试的圆心 R是球面的半径
计算: d = L - E(射线方向矢量,从头到尾) f = E - C(从中心球到射线起点的向量)
然后通过…找到交点。 堵塞: P = E + t * d 这是一个参数方程 Px = Ex + tdx Py = Ey + tdy 成 (x - h)2 + (y - k)2 = r2 (h,k) =圆心。
注意:我们在这里将问题简化为2D,我们得到的解决方案也适用于3D
得到:
Expand x2 - 2xh + h2 + y2 - 2yk + k2 - r2 = 0 Plug x = ex + tdx y = ey + tdy ( ex + tdx )2 - 2( ex + tdx )h + h2 + ( ey + tdy )2 - 2( ey + tdy )k + k2 - r2 = 0 Explode ex2 + 2extdx + t2dx2 - 2exh - 2tdxh + h2 + ey2 + 2eytdy + t2dy2 - 2eyk - 2tdyk + k2 - r2 = 0 Group t2( dx2 + dy2 ) + 2t( exdx + eydy - dxh - dyk ) + ex2 + ey2 - 2exh - 2eyk + h2 + k2 - r2 = 0 Finally, t2( d · d ) + 2t( e · d - d · c ) + e · e - 2( e · c ) + c · c - r2 = 0 Where d is the vector d and · is the dot product. And then, t2( d · d ) + 2t( d · ( e - c ) ) + ( e - c ) · ( e - c ) - r2 = 0 Letting f = e - c t2( d · d ) + 2t( d · f ) + f · f - r2 = 0
所以我们得到: T2 *(d·d) + 2t*(f·d) + (f·f - r2) = 0
求解二次方程:
float a = d.Dot( d ) ;
float b = 2*f.Dot( d ) ;
float c = f.Dot( f ) - r*r ;
float discriminant = b*b-4*a*c;
if( discriminant < 0 )
{
// no intersection
}
else
{
// ray didn't totally miss sphere,
// so there is a solution to
// the equation.
discriminant = sqrt( discriminant );
// either solution may be on or off the ray so need to test both
// t1 is always the smaller value, because BOTH discriminant and
// a are nonnegative.
float t1 = (-b - discriminant)/(2*a);
float t2 = (-b + discriminant)/(2*a);
// 3x HIT cases:
// -o-> --|--> | | --|->
// Impale(t1 hit,t2 hit), Poke(t1 hit,t2>1), ExitWound(t1<0, t2 hit),
// 3x MISS cases:
// -> o o -> | -> |
// FallShort (t1>1,t2>1), Past (t1<0,t2<0), CompletelyInside(t1<0, t2>1)
if( t1 >= 0 && t1 <= 1 )
{
// t1 is the intersection, and it's closer than t2
// (since t1 uses -b - discriminant)
// Impale, Poke
return true ;
}
// here t1 didn't intersect so we are either started
// inside the sphere or completely past it
if( t2 >= 0 && t2 <= 1 )
{
// ExitWound
return true ;
}
// no intn: FallShort, Past, CompletelyInside
return false ;
}
好吧,我不会给你代码,但既然你已经标记了这个算法,我认为这对你来说无关紧要。 首先,你要得到一个垂直于这条直线的向量。
y = ax + c是一个未知变量c是未知变量 为了解决这个问题,计算直线经过圆心时的值。
也就是说, 将圆心的位置代入直线方程,解出c。 然后计算原直线与其法线的交点。
这样就能得到直线上离圆最近的点。 计算该点到圆中心之间的距离(使用矢量的大小)。 如果这个小于圆的半径,看,我们有一个交点!
在此post circle中,通过检查圆心与线段上的点(Ipoint)之间的距离来检查线碰撞,该点表示从圆心到线段的法线N(图2)之间的交点。
(https://i.stack.imgur.com/3o6do.png)
在图像1中显示一个圆和一条直线,向量A指向线的起点,向量B指向线的终点,向量C指向圆的中心。现在我们必须找到向量E(从线起点到圆中心)和向量D(从线起点到线终点)这个计算如图1所示。
(https://i.stack.imgur.com/7098a.png)
在图2中,我们可以看到向量E通过向量E与单位向量D的“点积”投影到向量D上,点积的结果是标量Xp,表示向量N与向量D的直线起点与交点(Ipoint)之间的距离。 下一个向量X是由单位向量D和标量Xp相乘得到的。
现在我们需要找到向量Z(向量到Ipoint),它很容易它简单的向量加法向量A(在直线上的起点)和向量x。接下来我们需要处理特殊情况,我们必须检查是Ipoint在线段上,如果不是我们必须找出它是它的左边还是右边,我们将使用向量最接近来确定哪个点最接近圆。
(https://i.stack.imgur.com/p9WIr.png)
当投影Xp为负时,Ipoint在线段的左边,距离最近的向量等于线起点的向量,当投影Xp大于向量D的模时,距离最近的向量在线段的右边,距离最近的向量等于线终点的向量在其他情况下,距离最近的向量等于向量Z。
现在,当我们有最近的向量,我们需要找到从圆中心到Ipoint的向量(dist向量),很简单,我们只需要从中心向量减去最近的向量。接下来,检查向量距离的大小是否小于圆半径,如果是,那么它们就会碰撞,如果不是,就没有碰撞。
(https://i.stack.imgur.com/QJ63q.png)
最后,我们可以返回一些值来解决碰撞,最简单的方法是返回碰撞的重叠(从矢量dist magnitude中减去半径)和碰撞的轴,它的向量d。如果需要,交点是向量Z。
下面是JavaScript的一个很好的解决方案(包括所有必需的数学和实时插图) https://bl.ocks.org/milkbread/11000965
尽管该解决方案中的is_on函数需要修改:
函数is_on(a, b, c) { return Math.abs(距离(a,c) +距离(c,b) -距离(a,b))<0.000001; }