我有一条从a到B的直线和一个半径为R的圆。
用什么算法来检查直线是否与圆相交?它在圆边的哪个坐标上?
我有一条从a到B的直线和一个半径为R的圆。
用什么算法来检查直线是否与圆相交?它在圆边的哪个坐标上?
当前回答
这个Java函数返回一个DVec2对象。它用DVec2表示圆心,用DVec2表示半径,用Line表示直线。
public static DVec2 CircLine(DVec2 C, double r, Line line)
{
DVec2 A = line.p1;
DVec2 B = line.p2;
DVec2 P;
DVec2 AC = new DVec2( C );
AC.sub(A);
DVec2 AB = new DVec2( B );
AB.sub(A);
double ab2 = AB.dot(AB);
double acab = AC.dot(AB);
double t = acab / ab2;
if (t < 0.0)
t = 0.0;
else if (t > 1.0)
t = 1.0;
//P = A + t * AB;
P = new DVec2( AB );
P.mul( t );
P.add( A );
DVec2 H = new DVec2( P );
H.sub( C );
double h2 = H.dot(H);
double r2 = r * r;
if(h2 > r2)
return null;
else
return P;
}
其他回答
圆真的是一个坏人:)所以一个好办法是避免真正的圆,如果可以的话。如果你正在为游戏做碰撞检查,你可以进行一些简化,只做3个点积,并进行一些比较。
我称之为“胖点”或“瘦圈”。它是平行于线段方向上半径为0的椭圆。而是垂直于线段方向的全半径
首先,我会考虑重命名和切换坐标系统,以避免过多的数据:
s0s1 = B-A;
s0qp = C-A;
rSqr = r*r;
其次,hvec2f中的索引h意味着vector必须支持水平操作,如dot()/det()。这意味着它的组件被放置在一个单独的xmm寄存器中,以避免shuffle /hadd'ing/hsub'ing。现在我们开始,最简单的2D游戏碰撞检测的最佳性能版本:
bool fat_point_collides_segment(const hvec2f& s0qp, const hvec2f& s0s1, const float& rSqr) {
auto a = dot(s0s1, s0s1);
//if( a != 0 ) // if you haven't zero-length segments omit this, as it would save you 1 _mm_comineq_ss() instruction and 1 memory fetch
{
auto b = dot(s0s1, s0qp);
auto t = b / a; // length of projection of s0qp onto s0s1
//std::cout << "t = " << t << "\n";
if ((t >= 0) && (t <= 1)) //
{
auto c = dot(s0qp, s0qp);
auto r2 = c - a * t * t;
return (r2 <= rSqr); // true if collides
}
}
return false;
}
我怀疑你能进一步优化它。我正在用它进行神经网络驱动的赛车碰撞检测,处理数百万个迭代步骤。
另一种方法使用三角形ABC面积公式。交点检验比投影法简单高效,但求交点坐标需要更多的工作。至少它会被推迟到需要的时候。
三角形面积的计算公式为:area = bh/2
b是底长,h是高。我们选择线段AB作为底,使h是圆心C到直线的最短距离。
因为三角形的面积也可以用向量点积来计算,所以我们可以确定h。
// compute the triangle area times 2 (area = area2/2)
area2 = abs( (Bx-Ax)*(Cy-Ay) - (Cx-Ax)(By-Ay) )
// compute the AB segment length
LAB = sqrt( (Bx-Ax)² + (By-Ay)² )
// compute the triangle height
h = area2/LAB
// if the line intersects the circle
if( h < R )
{
...
}
更新1:
您可以通过使用这里描述的快速平方根倒数计算来优化代码,以获得1/LAB的良好近似值。
计算交点并不难。开始了
// compute the line AB direction vector components
Dx = (Bx-Ax)/LAB
Dy = (By-Ay)/LAB
// compute the distance from A toward B of closest point to C
t = Dx*(Cx-Ax) + Dy*(Cy-Ay)
// t should be equal to sqrt( (Cx-Ax)² + (Cy-Ay)² - h² )
// compute the intersection point distance from t
dt = sqrt( R² - h² )
// compute first intersection point coordinate
Ex = Ax + (t-dt)*Dx
Ey = Ay + (t-dt)*Dy
// compute second intersection point coordinate
Fx = Ax + (t+dt)*Dx
Fy = Ay + (t+dt)*Dy
如果h = R,则直线AB与圆相切,且值dt = 0, E = F。点的坐标为E和F的坐标。
如果在应用程序中出现这种情况,您应该检查A与B是否不同,并且段长度不为空。
以下是我在TypeScript中的解决方案,遵循@Mizipzor建议的想法(使用投影):
/**
* Determines whether a line segment defined by a start and end point intersects with a sphere defined by a center point and a radius
* @param a the start point of the line segment
* @param b the end point of the line segment
* @param c the center point of the sphere
* @param r the radius of the sphere
*/
export function lineSphereIntersects(
a: IPoint,
b: IPoint,
c: IPoint,
r: number
): boolean {
// find the three sides of the triangle formed by the three points
const ab: number = distance(a, b);
const ac: number = distance(a, c);
const bc: number = distance(b, c);
// check to see if either ends of the line segment are inside of the sphere
if (ac < r || bc < r) {
return true;
}
// find the angle between the line segment and the center of the sphere
const numerator: number = Math.pow(ac, 2) + Math.pow(ab, 2) - Math.pow(bc, 2);
const denominator: number = 2 * ac * ab;
const cab: number = Math.acos(numerator / denominator);
// find the distance from the center of the sphere and the line segment
const cd: number = Math.sin(cab) * ac;
// if the radius is at least as long as the distance between the center and the line
if (r >= cd) {
// find the distance between the line start and the point on the line closest to
// the center of the sphere
const ad: number = Math.cos(cab) * ac;
// intersection occurs when the point on the line closest to the sphere center is
// no further away than the end of the line
return ad <= ab;
}
return false;
}
export function distance(a: IPoint, b: IPoint): number {
return Math.sqrt(
Math.pow(b.z - a.z, 2) + Math.pow(b.y - a.y, 2) + Math.pow(b.x - a.x, 2)
);
}
export interface IPoint {
x: number;
y: number;
z: number;
}
在此post circle中,通过检查圆心与线段上的点(Ipoint)之间的距离来检查线碰撞,该点表示从圆心到线段的法线N(图2)之间的交点。
(https://i.stack.imgur.com/3o6do.png)
在图像1中显示一个圆和一条直线,向量A指向线的起点,向量B指向线的终点,向量C指向圆的中心。现在我们必须找到向量E(从线起点到圆中心)和向量D(从线起点到线终点)这个计算如图1所示。
(https://i.stack.imgur.com/7098a.png)
在图2中,我们可以看到向量E通过向量E与单位向量D的“点积”投影到向量D上,点积的结果是标量Xp,表示向量N与向量D的直线起点与交点(Ipoint)之间的距离。 下一个向量X是由单位向量D和标量Xp相乘得到的。
现在我们需要找到向量Z(向量到Ipoint),它很容易它简单的向量加法向量A(在直线上的起点)和向量x。接下来我们需要处理特殊情况,我们必须检查是Ipoint在线段上,如果不是我们必须找出它是它的左边还是右边,我们将使用向量最接近来确定哪个点最接近圆。
(https://i.stack.imgur.com/p9WIr.png)
当投影Xp为负时,Ipoint在线段的左边,距离最近的向量等于线起点的向量,当投影Xp大于向量D的模时,距离最近的向量在线段的右边,距离最近的向量等于线终点的向量在其他情况下,距离最近的向量等于向量Z。
现在,当我们有最近的向量,我们需要找到从圆中心到Ipoint的向量(dist向量),很简单,我们只需要从中心向量减去最近的向量。接下来,检查向量距离的大小是否小于圆半径,如果是,那么它们就会碰撞,如果不是,就没有碰撞。
(https://i.stack.imgur.com/QJ63q.png)
最后,我们可以返回一些值来解决碰撞,最简单的方法是返回碰撞的重叠(从矢量dist magnitude中减去半径)和碰撞的轴,它的向量d。如果需要,交点是向量Z。
如果你找到了圆心(因为它是3D的,我想你是指球体而不是圆)和直线之间的距离,然后检查这个距离是否小于可以做到这一点的半径。
碰撞点显然是直线和球面之间最近的点(当你计算球面和直线之间的距离时,会计算出这个点)
点与线之间的距离: http://mathworld.wolfram.com/Point-LineDistance3-Dimensional.html