我有一条从a到B的直线和一个半径为R的圆。

用什么算法来检查直线是否与圆相交?它在圆边的哪个坐标上?


当前回答

这个Java函数返回一个DVec2对象。它用DVec2表示圆心,用DVec2表示半径,用Line表示直线。

public static DVec2 CircLine(DVec2 C, double r, Line line)
{
    DVec2 A = line.p1;
    DVec2 B = line.p2;
    DVec2 P;
    DVec2 AC = new DVec2( C );
    AC.sub(A);
    DVec2 AB = new DVec2( B );
    AB.sub(A);
    double ab2 = AB.dot(AB);
    double acab = AC.dot(AB);
    double t = acab / ab2;

    if (t < 0.0) 
        t = 0.0;
    else if (t > 1.0) 
        t = 1.0;

    //P = A + t * AB;
    P = new DVec2( AB );
    P.mul( t );
    P.add( A );

    DVec2 H = new DVec2( P );
    H.sub( C );
    double h2 = H.dot(H);
    double r2 = r * r;

    if(h2 > r2) 
        return null;
    else
        return P;
}

其他回答

如果你找到了圆心(因为它是3D的,我想你是指球体而不是圆)和直线之间的距离,然后检查这个距离是否小于可以做到这一点的半径。

碰撞点显然是直线和球面之间最近的点(当你计算球面和直线之间的距离时,会计算出这个点)

点与线之间的距离: http://mathworld.wolfram.com/Point-LineDistance3-Dimensional.html

我知道自从这个帖子被打开以来已经有一段时间了。根据chmike给出的答案,经Aqib Mumtaz改进。他们给出了一个很好的答案,但只适用于无限线,就像Aqib说的那样。所以我添加了一些比较来知道线段是否与圆接触,我用Python写的。

def LineIntersectCircle(c, r, p1, p2):
    #p1 is the first line point
    #p2 is the second line point
    #c is the circle's center
    #r is the circle's radius

    p3 = [p1[0]-c[0], p1[1]-c[1]]
    p4 = [p2[0]-c[0], p2[1]-c[1]]

    m = (p4[1] - p3[1]) / (p4[0] - p3[0])
    b = p3[1] - m * p3[0]

    underRadical = math.pow(r,2)*math.pow(m,2) + math.pow(r,2) - math.pow(b,2)

    if (underRadical < 0):
        print("NOT")
    else:
        t1 = (-2*m*b+2*math.sqrt(underRadical)) / (2 * math.pow(m,2) + 2)
        t2 = (-2*m*b-2*math.sqrt(underRadical)) / (2 * math.pow(m,2) + 2)
        i1 = [t1+c[0], m * t1 + b + c[1]]
        i2 = [t2+c[0], m * t2 + b + c[1]]

        if p1[0] > p2[0]:                                           #Si el punto 1 es mayor al 2 en X
            if (i1[0] < p1[0]) and (i1[0] > p2[0]):                 #Si el punto iX esta entre 2 y 1 en X
                if p1[1] > p2[1]:                                   #Si el punto 1 es mayor al 2 en Y
                    if (i1[1] < p1[1]) and (i1[1] > p2[1]):         #Si el punto iy esta entre 2 y 1
                        print("Intersection")
                if p1[1] < p2[1]:                                   #Si el punto 2 es mayo al 2 en Y
                    if (i1[1] > p1[1]) and (i1[1] < p2[1]):         #Si el punto iy esta entre 1 y 2
                        print("Intersection")

        if p1[0] < p2[0]:                                           #Si el punto 2 es mayor al 1 en X
            if (i1[0] > p1[0]) and (i1[0] < p2[0]):                 #Si el punto iX esta entre 1 y 2 en X
                if p1[1] > p2[1]:                                   #Si el punto 1 es mayor al 2 en Y
                    if (i1[1] < p1[1]) and (i1[1] > p2[1]):         #Si el punto iy esta entre 2 y 1
                        print("Intersection")
                if p1[1] < p2[1]:                                   #Si el punto 2 es mayo al 2 en Y
                    if (i1[1] > p1[1]) and (i1[1] < p2[1]):         #Si el punto iy esta entre 1 y 2
                        print("Intersection")

        if p1[0] > p2[0]:                                           #Si el punto 1 es mayor al 2 en X
            if (i2[0] < p1[0]) and (i2[0] > p2[0]):                 #Si el punto iX esta entre 2 y 1 en X
                if p1[1] > p2[1]:                                   #Si el punto 1 es mayor al 2 en Y
                    if (i2[1] < p1[1]) and (i2[1] > p2[1]):         #Si el punto iy esta entre 2 y 1
                        print("Intersection")
                if p1[1] < p2[1]:                                   #Si el punto 2 es mayo al 2 en Y
                    if (i2[1] > p1[1]) and (i2[1] < p2[1]):         #Si el punto iy esta entre 1 y 2
                        print("Intersection")

        if p1[0] < p2[0]:                                           #Si el punto 2 es mayor al 1 en X
            if (i2[0] > p1[0]) and (i2[0] < p2[0]):                 #Si el punto iX esta entre 1 y 2 en X
                if p1[1] > p2[1]:                                   #Si el punto 1 es mayor al 2 en Y
                    if (i2[1] < p1[1]) and (i2[1] > p2[1]):         #Si el punto iy esta entre 2 y 1
                        print("Intersection")
                if p1[1] < p2[1]:                                   #Si el punto 2 es mayo al 2 en Y
                    if (i2[1] > p1[1]) and (i2[1] < p2[1]):         #Si el punto iy esta entre 1 y 2
                        print("Intersection")

' VB.NET - Code

Function CheckLineSegmentCircleIntersection(x1 As Double, y1 As Double, x2 As Double, y2 As Double, xc As Double, yc As Double, r As Double) As Boolean
    Static xd As Double = 0.0F
    Static yd As Double = 0.0F
    Static t As Double = 0.0F
    Static d As Double = 0.0F
    Static dx_2_1 As Double = 0.0F
    Static dy_2_1 As Double = 0.0F

    dx_2_1 = x2 - x1
    dy_2_1 = y2 - y1

    t = ((yc - y1) * dy_2_1 + (xc - x1) * dx_2_1) / (dy_2_1 * dy_2_1 + dx_2_1 * dx_2_1)

    If 0 <= t And t <= 1 Then
        xd = x1 + t * dx_2_1
        yd = y1 + t * dy_2_1

        d = Math.Sqrt((xd - xc) * (xd - xc) + (yd - yc) * (yd - yc))
        Return d <= r
    Else
        d = Math.Sqrt((xc - x1) * (xc - x1) + (yc - y1) * (yc - y1))
        If d <= r Then
            Return True
        Else
            d = Math.Sqrt((xc - x2) * (xc - x2) + (yc - y2) * (yc - y2))
            If d <= r Then
                Return True
            Else
                Return False
            End If
        End If
    End If
End Function

另一个在c#(部分圆类)。 经过测试,工作就像一个魅力。

public class Circle : IEquatable<Circle>
{
    // ******************************************************************
    // The center of a circle
    private Point _center;
    // The radius of a circle
    private double _radius;

   // ******************************************************************
    /// <summary>
    /// Find all intersections (0, 1, 2) of the circle with a line defined by its 2 points.
    /// Using: http://math.stackexchange.com/questions/228841/how-do-i-calculate-the-intersections-of-a-straight-line-and-a-circle
    /// Note: p is the Center.X and q is Center.Y
    /// </summary>
    /// <param name="linePoint1"></param>
    /// <param name="linePoint2"></param>
    /// <returns></returns>
    public List<Point> GetIntersections(Point linePoint1, Point linePoint2)
    {
        List<Point> intersections = new List<Point>();

        double dx = linePoint2.X - linePoint1.X;

        if (dx.AboutEquals(0)) // Straight vertical line
        {
            if (linePoint1.X.AboutEquals(Center.X - Radius) || linePoint1.X.AboutEquals(Center.X + Radius))
            {
                Point pt = new Point(linePoint1.X, Center.Y);
                intersections.Add(pt);
            }
            else if (linePoint1.X > Center.X - Radius && linePoint1.X < Center.X + Radius)
            {
                double x = linePoint1.X - Center.X;

                Point pt = new Point(linePoint1.X, Center.Y + Math.Sqrt(Radius * Radius - (x * x)));
                intersections.Add(pt);

                pt = new Point(linePoint1.X, Center.Y - Math.Sqrt(Radius * Radius - (x * x)));
                intersections.Add(pt);
            }

            return intersections;
        }

        // Line function (y = mx + b)
        double dy = linePoint2.Y - linePoint1.Y;
        double m = dy / dx;
        double b = linePoint1.Y - m * linePoint1.X;

        double A = m * m + 1;
        double B = 2 * (m * b - m * _center.Y - Center.X);
        double C = Center.X * Center.X + Center.Y * Center.Y - Radius * Radius - 2 * b * Center.Y + b * b;

        double discriminant = B * B - 4 * A * C;

        if (discriminant < 0)
        {
            return intersections; // there is no intersections
        }

        if (discriminant.AboutEquals(0)) // Tangeante (touch on 1 point only)
        {
            double x = -B / (2 * A);
            double y = m * x + b;

            intersections.Add(new Point(x, y));
        }
        else // Secant (touch on 2 points)
        {
            double x = (-B + Math.Sqrt(discriminant)) / (2 * A);
            double y = m * x + b;
            intersections.Add(new Point(x, y));

            x = (-B - Math.Sqrt(discriminant)) / (2 * A);
            y = m * x + b;
            intersections.Add(new Point(x, y));
        }

        return intersections;
    }

    // ******************************************************************
    // Get the center
    [XmlElement("Center")]
    public Point Center
    {
        get { return _center; }
        set
        {
            _center = value;
        }
    }

    // ******************************************************************
    // Get the radius
    [XmlElement]
    public double Radius
    {
        get { return _radius; }
        set { _radius = value; }
    }

    //// ******************************************************************
    //[XmlArrayItemAttribute("DoublePoint")]
    //public List<Point> Coordinates
    //{
    //    get { return _coordinates; }
    //}

    // ******************************************************************
    // Construct a circle without any specification
    public Circle()
    {
        _center.X = 0;
        _center.Y = 0;
        _radius = 0;
    }

    // ******************************************************************
    // Construct a circle without any specification
    public Circle(double radius)
    {
        _center.X = 0;
        _center.Y = 0;
        _radius = radius;
    }

    // ******************************************************************
    // Construct a circle with the specified circle
    public Circle(Circle circle)
    {
        _center = circle._center;
        _radius = circle._radius;
    }

    // ******************************************************************
    // Construct a circle with the specified center and radius
    public Circle(Point center, double radius)
    {
        _center = center;
        _radius = radius;
    }

    // ******************************************************************
    // Construct a circle based on one point
    public Circle(Point center)
    {
        _center = center;
        _radius = 0;
    }

    // ******************************************************************
    // Construct a circle based on two points
    public Circle(Point p1, Point p2)
    {
        Circle2Points(p1, p2);
    }

要求:

using System;

namespace Mathematic
{
    public static class DoubleExtension
    {
        // ******************************************************************
        // Base on Hans Passant Answer on:
        // http://stackoverflow.com/questions/2411392/double-epsilon-for-equality-greater-than-less-than-less-than-or-equal-to-gre

        /// <summary>
        /// Compare two double taking in account the double precision potential error.
        /// Take care: truncation errors accumulate on calculation. More you do, more you should increase the epsilon.
        public static bool AboutEquals(this double value1, double value2)
        {
            if (double.IsPositiveInfinity(value1))
                return double.IsPositiveInfinity(value2);

            if (double.IsNegativeInfinity(value1))
                return double.IsNegativeInfinity(value2);

            if (double.IsNaN(value1))
                return double.IsNaN(value2);

            double epsilon = Math.Max(Math.Abs(value1), Math.Abs(value2)) * 1E-15;
            return Math.Abs(value1 - value2) <= epsilon;
        }

        // ******************************************************************
        // Base on Hans Passant Answer on:
        // http://stackoverflow.com/questions/2411392/double-epsilon-for-equality-greater-than-less-than-less-than-or-equal-to-gre

        /// <summary>
        /// Compare two double taking in account the double precision potential error.
        /// Take care: truncation errors accumulate on calculation. More you do, more you should increase the epsilon.
        /// You get really better performance when you can determine the contextual epsilon first.
        /// </summary>
        /// <param name="value1"></param>
        /// <param name="value2"></param>
        /// <param name="precalculatedContextualEpsilon"></param>
        /// <returns></returns>
        public static bool AboutEquals(this double value1, double value2, double precalculatedContextualEpsilon)
        {
            if (double.IsPositiveInfinity(value1))
                return double.IsPositiveInfinity(value2);

            if (double.IsNegativeInfinity(value1))
                return double.IsNegativeInfinity(value2);

            if (double.IsNaN(value1))
                return double.IsNaN(value2);

            return Math.Abs(value1 - value2) <= precalculatedContextualEpsilon;
        }

        // ******************************************************************
        public static double GetContextualEpsilon(this double biggestPossibleContextualValue)
        {
            return biggestPossibleContextualValue * 1E-15;
        }

        // ******************************************************************
        /// <summary>
        /// Mathlab equivalent
        /// </summary>
        /// <param name="dividend"></param>
        /// <param name="divisor"></param>
        /// <returns></returns>
        public static double Mod(this double dividend, double divisor)
        {
            return dividend - System.Math.Floor(dividend / divisor) * divisor;
        }

        // ******************************************************************
    }
}

好吧,我不会给你代码,但既然你已经标记了这个算法,我认为这对你来说无关紧要。 首先,你要得到一个垂直于这条直线的向量。

y = ax + c是一个未知变量c是未知变量 为了解决这个问题,计算直线经过圆心时的值。

也就是说, 将圆心的位置代入直线方程,解出c。 然后计算原直线与其法线的交点。

这样就能得到直线上离圆最近的点。 计算该点到圆中心之间的距离(使用矢量的大小)。 如果这个小于圆的半径,看,我们有一个交点!