我有一条从a到B的直线和一个半径为R的圆。

用什么算法来检查直线是否与圆相交?它在圆边的哪个坐标上?


当前回答

下面是JavaScript的一个很好的解决方案(包括所有必需的数学和实时插图) https://bl.ocks.org/milkbread/11000965

尽管该解决方案中的is_on函数需要修改:

函数is_on(a, b, c) { return Math.abs(距离(a,c) +距离(c,b) -距离(a,b))<0.000001; }

其他回答

好吧,我不会给你代码,但既然你已经标记了这个算法,我认为这对你来说无关紧要。 首先,你要得到一个垂直于这条直线的向量。

y = ax + c是一个未知变量c是未知变量 为了解决这个问题,计算直线经过圆心时的值。

也就是说, 将圆心的位置代入直线方程,解出c。 然后计算原直线与其法线的交点。

这样就能得到直线上离圆最近的点。 计算该点到圆中心之间的距离(使用矢量的大小)。 如果这个小于圆的半径,看,我们有一个交点!

我写了一个小脚本,通过将圆的中心点投影到直线上来测试相交。

vector distVector = centerPoint - projectedPoint;
if(distVector.length() < circle.radius)
{
    double distance = circle.radius - distVector.length();
    vector moveVector = distVector.normalize() * distance;
    circle.move(moveVector);
}

http://jsfiddle.net/ercang/ornh3594/1/

如果需要检查与线段的碰撞,还需要考虑圆心到起点和终点的距离。

vector distVector = centerPoint - startPoint;
if(distVector.length() < circle.radius)
{
    double distance = circle.radius - distVector.length();
    vector moveVector = distVector.normalize() * distance;
    circle.move(moveVector);
}

https://jsfiddle.net/ercang/menp0991/

如果直线的坐标为A.x, A.y和B.x, B.y,圆心为C.x, C.y,则直线公式为:

x = A.x * t + B.x * (1 - t)

y = A.y * t + B.y * (1 - t)

0 < = t < = 1

这个圆是

(C.x - x)²+ (C.y - y)²= R²

如果你把直线的x和y公式代入圆公式,你会得到一个t的二阶方程,它的解是交点(如果有的话)。如果你得到的t小于0或大于1,那么它不是一个解,但它表明这条线“指向”圆的方向。

这个Java函数返回一个DVec2对象。它用DVec2表示圆心,用DVec2表示半径,用Line表示直线。

public static DVec2 CircLine(DVec2 C, double r, Line line)
{
    DVec2 A = line.p1;
    DVec2 B = line.p2;
    DVec2 P;
    DVec2 AC = new DVec2( C );
    AC.sub(A);
    DVec2 AB = new DVec2( B );
    AB.sub(A);
    double ab2 = AB.dot(AB);
    double acab = AC.dot(AB);
    double t = acab / ab2;

    if (t < 0.0) 
        t = 0.0;
    else if (t > 1.0) 
        t = 1.0;

    //P = A + t * AB;
    P = new DVec2( AB );
    P.mul( t );
    P.add( A );

    DVec2 H = new DVec2( P );
    H.sub( C );
    double h2 = H.dot(H);
    double r2 = r * r;

    if(h2 > r2) 
        return null;
    else
        return P;
}

也许有另一种方法来解决这个问题,使用坐标系的旋转。

通常,如果一个线段是水平的或垂直的,这意味着平行于x轴或y轴,交点的求解很容易,因为我们已经知道交点的一个坐标,如果有的话。剩下的显然是用圆的方程找到另一个坐标。

受此启发,我们可以利用坐标系旋转,使一个轴的方向与线段的方向重合。

让我们以圆x^2+y^2=1和线段P1-P2为例,P1(-1.5,0.5)和P2(-0.5,-0.5)在x-y系统中。下面的方程提醒你旋转的原理,其中是逆时针方向的角度,x'-y'是旋转后的方程组:

x'=x*cos () + y*sin () y' = - x*sin () + y*cos ()

和反向

X = X ' * cos - y' * sin Y = x' * sin + Y ' * cos

考虑P1-P2方向(用-x表示为45°),我们可以取=45°。将第二个旋转方程转化为x-y系统中的圆方程:x^2+y^2=1,经过简单的运算,我们得到x'-y'系统中的“相同”方程:x'^2+y'^2=1。

利用第一个旋转方程=> P1(-根号(2)/2,根号(2)),P2(-根号(2)/ 2,0),线段端点变成x'-y'系统。

假设交点为p,在x'-y'中,Px = -根号2 /2。使用新的圆方程,我们得到Py = +根号(2)/2。将P转换成原始的x-y系统,最终得到P(-1,0)

为了实现这个数值,我们可以先看看线段的方向:水平,垂直或不垂直。如果它属于前两种情况,很简单。如果是最后一种情况,应用上述算法。

为了判断是否有交集,我们可以将解与端点坐标进行比较,看看它们之间是否有一个根。

我相信只要我们有了它的方程,这个方法也可以应用于其他曲线。唯一的缺点是,我们应该在x'-y'坐标系下解方程,这可能很难。