我有一条从a到B的直线和一个半径为R的圆。
用什么算法来检查直线是否与圆相交?它在圆边的哪个坐标上?
我有一条从a到B的直线和一个半径为R的圆。
用什么算法来检查直线是否与圆相交?它在圆边的哪个坐标上?
当前回答
如果直线的坐标为A.x, A.y和B.x, B.y,圆心为C.x, C.y,则直线公式为:
x = A.x * t + B.x * (1 - t)
y = A.y * t + B.y * (1 - t)
0 < = t < = 1
这个圆是
(C.x - x)²+ (C.y - y)²= R²
如果你把直线的x和y公式代入圆公式,你会得到一个t的二阶方程,它的解是交点(如果有的话)。如果你得到的t小于0或大于1,那么它不是一个解,但它表明这条线“指向”圆的方向。
其他回答
圆真的是一个坏人:)所以一个好办法是避免真正的圆,如果可以的话。如果你正在为游戏做碰撞检查,你可以进行一些简化,只做3个点积,并进行一些比较。
我称之为“胖点”或“瘦圈”。它是平行于线段方向上半径为0的椭圆。而是垂直于线段方向的全半径
首先,我会考虑重命名和切换坐标系统,以避免过多的数据:
s0s1 = B-A;
s0qp = C-A;
rSqr = r*r;
其次,hvec2f中的索引h意味着vector必须支持水平操作,如dot()/det()。这意味着它的组件被放置在一个单独的xmm寄存器中,以避免shuffle /hadd'ing/hsub'ing。现在我们开始,最简单的2D游戏碰撞检测的最佳性能版本:
bool fat_point_collides_segment(const hvec2f& s0qp, const hvec2f& s0s1, const float& rSqr) {
auto a = dot(s0s1, s0s1);
//if( a != 0 ) // if you haven't zero-length segments omit this, as it would save you 1 _mm_comineq_ss() instruction and 1 memory fetch
{
auto b = dot(s0s1, s0qp);
auto t = b / a; // length of projection of s0qp onto s0s1
//std::cout << "t = " << t << "\n";
if ((t >= 0) && (t <= 1)) //
{
auto c = dot(s0qp, s0qp);
auto r2 = c - a * t * t;
return (r2 <= rSqr); // true if collides
}
}
return false;
}
我怀疑你能进一步优化它。我正在用它进行神经网络驱动的赛车碰撞检测,处理数百万个迭代步骤。
采取
E是射线的起点, L是射线的端点, C是你测试的圆心 R是球面的半径
计算: d = L - E(射线方向矢量,从头到尾) f = E - C(从中心球到射线起点的向量)
然后通过…找到交点。 堵塞: P = E + t * d 这是一个参数方程 Px = Ex + tdx Py = Ey + tdy 成 (x - h)2 + (y - k)2 = r2 (h,k) =圆心。
注意:我们在这里将问题简化为2D,我们得到的解决方案也适用于3D
得到:
Expand x2 - 2xh + h2 + y2 - 2yk + k2 - r2 = 0 Plug x = ex + tdx y = ey + tdy ( ex + tdx )2 - 2( ex + tdx )h + h2 + ( ey + tdy )2 - 2( ey + tdy )k + k2 - r2 = 0 Explode ex2 + 2extdx + t2dx2 - 2exh - 2tdxh + h2 + ey2 + 2eytdy + t2dy2 - 2eyk - 2tdyk + k2 - r2 = 0 Group t2( dx2 + dy2 ) + 2t( exdx + eydy - dxh - dyk ) + ex2 + ey2 - 2exh - 2eyk + h2 + k2 - r2 = 0 Finally, t2( d · d ) + 2t( e · d - d · c ) + e · e - 2( e · c ) + c · c - r2 = 0 Where d is the vector d and · is the dot product. And then, t2( d · d ) + 2t( d · ( e - c ) ) + ( e - c ) · ( e - c ) - r2 = 0 Letting f = e - c t2( d · d ) + 2t( d · f ) + f · f - r2 = 0
所以我们得到: T2 *(d·d) + 2t*(f·d) + (f·f - r2) = 0
求解二次方程:
float a = d.Dot( d ) ;
float b = 2*f.Dot( d ) ;
float c = f.Dot( f ) - r*r ;
float discriminant = b*b-4*a*c;
if( discriminant < 0 )
{
// no intersection
}
else
{
// ray didn't totally miss sphere,
// so there is a solution to
// the equation.
discriminant = sqrt( discriminant );
// either solution may be on or off the ray so need to test both
// t1 is always the smaller value, because BOTH discriminant and
// a are nonnegative.
float t1 = (-b - discriminant)/(2*a);
float t2 = (-b + discriminant)/(2*a);
// 3x HIT cases:
// -o-> --|--> | | --|->
// Impale(t1 hit,t2 hit), Poke(t1 hit,t2>1), ExitWound(t1<0, t2 hit),
// 3x MISS cases:
// -> o o -> | -> |
// FallShort (t1>1,t2>1), Past (t1<0,t2<0), CompletelyInside(t1<0, t2>1)
if( t1 >= 0 && t1 <= 1 )
{
// t1 is the intersection, and it's closer than t2
// (since t1 uses -b - discriminant)
// Impale, Poke
return true ;
}
// here t1 didn't intersect so we are either started
// inside the sphere or completely past it
if( t2 >= 0 && t2 <= 1 )
{
// ExitWound
return true ;
}
// no intn: FallShort, Past, CompletelyInside
return false ;
}
我根据chmike给出的答案为iOS创建了这个函数
+ (NSArray *)intersectionPointsOfCircleWithCenter:(CGPoint)center withRadius:(float)radius toLinePoint1:(CGPoint)p1 andLinePoint2:(CGPoint)p2
{
NSMutableArray *intersectionPoints = [NSMutableArray array];
float Ax = p1.x;
float Ay = p1.y;
float Bx = p2.x;
float By = p2.y;
float Cx = center.x;
float Cy = center.y;
float R = radius;
// compute the euclidean distance between A and B
float LAB = sqrt( pow(Bx-Ax, 2)+pow(By-Ay, 2) );
// compute the direction vector D from A to B
float Dx = (Bx-Ax)/LAB;
float Dy = (By-Ay)/LAB;
// Now the line equation is x = Dx*t + Ax, y = Dy*t + Ay with 0 <= t <= 1.
// compute the value t of the closest point to the circle center (Cx, Cy)
float t = Dx*(Cx-Ax) + Dy*(Cy-Ay);
// This is the projection of C on the line from A to B.
// compute the coordinates of the point E on line and closest to C
float Ex = t*Dx+Ax;
float Ey = t*Dy+Ay;
// compute the euclidean distance from E to C
float LEC = sqrt( pow(Ex-Cx, 2)+ pow(Ey-Cy, 2) );
// test if the line intersects the circle
if( LEC < R )
{
// compute distance from t to circle intersection point
float dt = sqrt( pow(R, 2) - pow(LEC,2) );
// compute first intersection point
float Fx = (t-dt)*Dx + Ax;
float Fy = (t-dt)*Dy + Ay;
// compute second intersection point
float Gx = (t+dt)*Dx + Ax;
float Gy = (t+dt)*Dy + Ay;
[intersectionPoints addObject:[NSValue valueWithCGPoint:CGPointMake(Fx, Fy)]];
[intersectionPoints addObject:[NSValue valueWithCGPoint:CGPointMake(Gx, Gy)]];
}
// else test if the line is tangent to circle
else if( LEC == R ) {
// tangent point to circle is E
[intersectionPoints addObject:[NSValue valueWithCGPoint:CGPointMake(Ex, Ey)]];
}
else {
// line doesn't touch circle
}
return intersectionPoints;
}
我会用这个算法来计算点(圆心)和线(线AB)之间的距离。这可以用来确定直线与圆的交点。
假设有点A B c, Ax和Ay是A点的x和y分量。B和c也是一样,标量R是圆半径。
该算法要求A B C是不同的点,且R不为0。
这是算法
// compute the euclidean distance between A and B
LAB = sqrt( (Bx-Ax)²+(By-Ay)² )
// compute the direction vector D from A to B
Dx = (Bx-Ax)/LAB
Dy = (By-Ay)/LAB
// the equation of the line AB is x = Dx*t + Ax, y = Dy*t + Ay with 0 <= t <= LAB.
// compute the distance between the points A and E, where
// E is the point of AB closest the circle center (Cx, Cy)
t = Dx*(Cx-Ax) + Dy*(Cy-Ay)
// compute the coordinates of the point E
Ex = t*Dx+Ax
Ey = t*Dy+Ay
// compute the euclidean distance between E and C
LEC = sqrt((Ex-Cx)²+(Ey-Cy)²)
// test if the line intersects the circle
if( LEC < R )
{
// compute distance from t to circle intersection point
dt = sqrt( R² - LEC²)
// compute first intersection point
Fx = (t-dt)*Dx + Ax
Fy = (t-dt)*Dy + Ay
// compute second intersection point
Gx = (t+dt)*Dx + Ax
Gy = (t+dt)*Dy + Ay
}
// else test if the line is tangent to circle
else if( LEC == R )
// tangent point to circle is E
else
// line doesn't touch circle
我知道自从这个帖子被打开以来已经有一段时间了。根据chmike给出的答案,经Aqib Mumtaz改进。他们给出了一个很好的答案,但只适用于无限线,就像Aqib说的那样。所以我添加了一些比较来知道线段是否与圆接触,我用Python写的。
def LineIntersectCircle(c, r, p1, p2):
#p1 is the first line point
#p2 is the second line point
#c is the circle's center
#r is the circle's radius
p3 = [p1[0]-c[0], p1[1]-c[1]]
p4 = [p2[0]-c[0], p2[1]-c[1]]
m = (p4[1] - p3[1]) / (p4[0] - p3[0])
b = p3[1] - m * p3[0]
underRadical = math.pow(r,2)*math.pow(m,2) + math.pow(r,2) - math.pow(b,2)
if (underRadical < 0):
print("NOT")
else:
t1 = (-2*m*b+2*math.sqrt(underRadical)) / (2 * math.pow(m,2) + 2)
t2 = (-2*m*b-2*math.sqrt(underRadical)) / (2 * math.pow(m,2) + 2)
i1 = [t1+c[0], m * t1 + b + c[1]]
i2 = [t2+c[0], m * t2 + b + c[1]]
if p1[0] > p2[0]: #Si el punto 1 es mayor al 2 en X
if (i1[0] < p1[0]) and (i1[0] > p2[0]): #Si el punto iX esta entre 2 y 1 en X
if p1[1] > p2[1]: #Si el punto 1 es mayor al 2 en Y
if (i1[1] < p1[1]) and (i1[1] > p2[1]): #Si el punto iy esta entre 2 y 1
print("Intersection")
if p1[1] < p2[1]: #Si el punto 2 es mayo al 2 en Y
if (i1[1] > p1[1]) and (i1[1] < p2[1]): #Si el punto iy esta entre 1 y 2
print("Intersection")
if p1[0] < p2[0]: #Si el punto 2 es mayor al 1 en X
if (i1[0] > p1[0]) and (i1[0] < p2[0]): #Si el punto iX esta entre 1 y 2 en X
if p1[1] > p2[1]: #Si el punto 1 es mayor al 2 en Y
if (i1[1] < p1[1]) and (i1[1] > p2[1]): #Si el punto iy esta entre 2 y 1
print("Intersection")
if p1[1] < p2[1]: #Si el punto 2 es mayo al 2 en Y
if (i1[1] > p1[1]) and (i1[1] < p2[1]): #Si el punto iy esta entre 1 y 2
print("Intersection")
if p1[0] > p2[0]: #Si el punto 1 es mayor al 2 en X
if (i2[0] < p1[0]) and (i2[0] > p2[0]): #Si el punto iX esta entre 2 y 1 en X
if p1[1] > p2[1]: #Si el punto 1 es mayor al 2 en Y
if (i2[1] < p1[1]) and (i2[1] > p2[1]): #Si el punto iy esta entre 2 y 1
print("Intersection")
if p1[1] < p2[1]: #Si el punto 2 es mayo al 2 en Y
if (i2[1] > p1[1]) and (i2[1] < p2[1]): #Si el punto iy esta entre 1 y 2
print("Intersection")
if p1[0] < p2[0]: #Si el punto 2 es mayor al 1 en X
if (i2[0] > p1[0]) and (i2[0] < p2[0]): #Si el punto iX esta entre 1 y 2 en X
if p1[1] > p2[1]: #Si el punto 1 es mayor al 2 en Y
if (i2[1] < p1[1]) and (i2[1] > p2[1]): #Si el punto iy esta entre 2 y 1
print("Intersection")
if p1[1] < p2[1]: #Si el punto 2 es mayo al 2 en Y
if (i2[1] > p1[1]) and (i2[1] < p2[1]): #Si el punto iy esta entre 1 y 2
print("Intersection")