我有一条从a到B的直线和一个半径为R的圆。
用什么算法来检查直线是否与圆相交?它在圆边的哪个坐标上?
我有一条从a到B的直线和一个半径为R的圆。
用什么算法来检查直线是否与圆相交?它在圆边的哪个坐标上?
当前回答
似乎没人考虑投影,我是不是完全跑题了?
将向量AC投影到AB上,投影的向量AD就得到了新的点D。 如果D和C之间的距离小于(或等于)R,我们有一个交点。
是这样的:
社区编辑:
对于稍后无意中看到这篇文章并想知道如何实现这样一个算法的人来说,这里是一个使用常见向量操作函数用JavaScript编写的通用实现。
/**
* Returns the distance from line segment AB to point C
*/
function distanceSegmentToPoint(A, B, C) {
// Compute vectors AC and AB
const AC = sub(C, A);
const AB = sub(B, A);
// Get point D by taking the projection of AC onto AB then adding the offset of A
const D = add(proj(AC, AB), A);
const AD = sub(D, A);
// D might not be on AB so calculate k of D down AB (aka solve AD = k * AB)
// We can use either component, but choose larger value to reduce the chance of dividing by zero
const k = Math.abs(AB.x) > Math.abs(AB.y) ? AD.x / AB.x : AD.y / AB.y;
// Check if D is off either end of the line segment
if (k <= 0.0) {
return Math.sqrt(hypot2(C, A));
} else if (k >= 1.0) {
return Math.sqrt(hypot2(C, B));
}
return Math.sqrt(hypot2(C, D));
}
对于这个实现,我使用了两个常见的矢量操作函数,无论您在什么环境中工作,都可能已经提供了这些函数。但是,如果您还没有这些可用的功能,下面介绍如何实现它们。
// Define some common functions for working with vectors
const add = (a, b) => ({x: a.x + b.x, y: a.y + b.y});
const sub = (a, b) => ({x: a.x - b.x, y: a.y - b.y});
const dot = (a, b) => a.x * b.x + a.y * b.y;
const hypot2 = (a, b) => dot(sub(a, b), sub(a, b));
// Function for projecting some vector a onto b
function proj(a, b) {
const k = dot(a, b) / dot(b, b);
return {x: k * b.x, y: k * b.y};
}
其他回答
我根据chmike给出的答案为iOS创建了这个函数
+ (NSArray *)intersectionPointsOfCircleWithCenter:(CGPoint)center withRadius:(float)radius toLinePoint1:(CGPoint)p1 andLinePoint2:(CGPoint)p2
{
NSMutableArray *intersectionPoints = [NSMutableArray array];
float Ax = p1.x;
float Ay = p1.y;
float Bx = p2.x;
float By = p2.y;
float Cx = center.x;
float Cy = center.y;
float R = radius;
// compute the euclidean distance between A and B
float LAB = sqrt( pow(Bx-Ax, 2)+pow(By-Ay, 2) );
// compute the direction vector D from A to B
float Dx = (Bx-Ax)/LAB;
float Dy = (By-Ay)/LAB;
// Now the line equation is x = Dx*t + Ax, y = Dy*t + Ay with 0 <= t <= 1.
// compute the value t of the closest point to the circle center (Cx, Cy)
float t = Dx*(Cx-Ax) + Dy*(Cy-Ay);
// This is the projection of C on the line from A to B.
// compute the coordinates of the point E on line and closest to C
float Ex = t*Dx+Ax;
float Ey = t*Dy+Ay;
// compute the euclidean distance from E to C
float LEC = sqrt( pow(Ex-Cx, 2)+ pow(Ey-Cy, 2) );
// test if the line intersects the circle
if( LEC < R )
{
// compute distance from t to circle intersection point
float dt = sqrt( pow(R, 2) - pow(LEC,2) );
// compute first intersection point
float Fx = (t-dt)*Dx + Ax;
float Fy = (t-dt)*Dy + Ay;
// compute second intersection point
float Gx = (t+dt)*Dx + Ax;
float Gy = (t+dt)*Dy + Ay;
[intersectionPoints addObject:[NSValue valueWithCGPoint:CGPointMake(Fx, Fy)]];
[intersectionPoints addObject:[NSValue valueWithCGPoint:CGPointMake(Gx, Gy)]];
}
// else test if the line is tangent to circle
else if( LEC == R ) {
// tangent point to circle is E
[intersectionPoints addObject:[NSValue valueWithCGPoint:CGPointMake(Ex, Ey)]];
}
else {
// line doesn't touch circle
}
return intersectionPoints;
}
下面是JavaScript的一个很好的解决方案(包括所有必需的数学和实时插图) https://bl.ocks.org/milkbread/11000965
尽管该解决方案中的is_on函数需要修改:
函数is_on(a, b, c) { return Math.abs(距离(a,c) +距离(c,b) -距离(a,b))<0.000001; }
采取
E是射线的起点, L是射线的端点, C是你测试的圆心 R是球面的半径
计算: d = L - E(射线方向矢量,从头到尾) f = E - C(从中心球到射线起点的向量)
然后通过…找到交点。 堵塞: P = E + t * d 这是一个参数方程 Px = Ex + tdx Py = Ey + tdy 成 (x - h)2 + (y - k)2 = r2 (h,k) =圆心。
注意:我们在这里将问题简化为2D,我们得到的解决方案也适用于3D
得到:
Expand x2 - 2xh + h2 + y2 - 2yk + k2 - r2 = 0 Plug x = ex + tdx y = ey + tdy ( ex + tdx )2 - 2( ex + tdx )h + h2 + ( ey + tdy )2 - 2( ey + tdy )k + k2 - r2 = 0 Explode ex2 + 2extdx + t2dx2 - 2exh - 2tdxh + h2 + ey2 + 2eytdy + t2dy2 - 2eyk - 2tdyk + k2 - r2 = 0 Group t2( dx2 + dy2 ) + 2t( exdx + eydy - dxh - dyk ) + ex2 + ey2 - 2exh - 2eyk + h2 + k2 - r2 = 0 Finally, t2( d · d ) + 2t( e · d - d · c ) + e · e - 2( e · c ) + c · c - r2 = 0 Where d is the vector d and · is the dot product. And then, t2( d · d ) + 2t( d · ( e - c ) ) + ( e - c ) · ( e - c ) - r2 = 0 Letting f = e - c t2( d · d ) + 2t( d · f ) + f · f - r2 = 0
所以我们得到: T2 *(d·d) + 2t*(f·d) + (f·f - r2) = 0
求解二次方程:
float a = d.Dot( d ) ;
float b = 2*f.Dot( d ) ;
float c = f.Dot( f ) - r*r ;
float discriminant = b*b-4*a*c;
if( discriminant < 0 )
{
// no intersection
}
else
{
// ray didn't totally miss sphere,
// so there is a solution to
// the equation.
discriminant = sqrt( discriminant );
// either solution may be on or off the ray so need to test both
// t1 is always the smaller value, because BOTH discriminant and
// a are nonnegative.
float t1 = (-b - discriminant)/(2*a);
float t2 = (-b + discriminant)/(2*a);
// 3x HIT cases:
// -o-> --|--> | | --|->
// Impale(t1 hit,t2 hit), Poke(t1 hit,t2>1), ExitWound(t1<0, t2 hit),
// 3x MISS cases:
// -> o o -> | -> |
// FallShort (t1>1,t2>1), Past (t1<0,t2<0), CompletelyInside(t1<0, t2>1)
if( t1 >= 0 && t1 <= 1 )
{
// t1 is the intersection, and it's closer than t2
// (since t1 uses -b - discriminant)
// Impale, Poke
return true ;
}
// here t1 didn't intersect so we are either started
// inside the sphere or completely past it
if( t2 >= 0 && t2 <= 1 )
{
// ExitWound
return true ;
}
// no intn: FallShort, Past, CompletelyInside
return false ;
}
如果你找到了圆心(因为它是3D的,我想你是指球体而不是圆)和直线之间的距离,然后检查这个距离是否小于可以做到这一点的半径。
碰撞点显然是直线和球面之间最近的点(当你计算球面和直线之间的距离时,会计算出这个点)
点与线之间的距离: http://mathworld.wolfram.com/Point-LineDistance3-Dimensional.html
基于@Joe Skeen的python解决方案
def check_line_segment_circle_intersection(line, point, radious):
""" Checks whether a point intersects with a line defined by two points.
A `point` is list with two values: [2, 3]
A `line` is list with two points: [point1, point2]
"""
line_distance = distance(line[0], line[1])
distance_start_to_point = distance(line[0], point)
distance_end_to_point = distance(line[1], point)
if (distance_start_to_point <= radious or distance_end_to_point <= radious):
return True
# angle between line and point with law of cosines
numerator = (math.pow(distance_start_to_point, 2)
+ math.pow(line_distance, 2)
- math.pow(distance_end_to_point, 2))
denominator = 2 * distance_start_to_point * line_distance
ratio = numerator / denominator
ratio = ratio if ratio <= 1 else 1 # To account for float errors
ratio = ratio if ratio >= -1 else -1 # To account for float errors
angle = math.acos(ratio)
# distance from the point to the line with sin projection
distance_line_to_point = math.sin(angle) * distance_start_to_point
if distance_line_to_point <= radious:
point_projection_in_line = math.cos(angle) * distance_start_to_point
# Intersection occurs whent the point projection in the line is less
# than the line distance and positive
return point_projection_in_line <= line_distance and point_projection_in_line >= 0
return False
def distance(point1, point2):
return math.sqrt(
math.pow(point1[1] - point2[1], 2) +
math.pow(point1[0] - point2[0], 2)
)