我有一条从a到B的直线和一个半径为R的圆。

用什么算法来检查直线是否与圆相交?它在圆边的哪个坐标上?


当前回答

我只是需要它,所以我想出了这个解决方案。语言是maxscript,但是它应该很容易被翻译成任何其他语言。 sideA, sideB和CircleRadius为标量,其余变量为[x,y,z]。假设z=0在XY平面上求解

fn projectPoint p1 p2 p3 = --project  p1 perpendicular to the line p2-p3
(
    local v= normalize (p3-p2)
    local p= (p1-p2)
    p2+((dot v p)*v)
)
fn findIntersectionLineCircle CircleCenter CircleRadius LineP1 LineP2=
(
    pp=projectPoint CircleCenter LineP1 LineP2
    sideA=distance pp CircleCenter
    --use pythagoras to solve the third side
    sideB=sqrt(CircleRadius^2-sideA^2) -- this will return NaN if they don't intersect
    IntersectV=normalize (pp-CircleCenter)
    perpV=[IntersectV.y,-IntersectV.x,IntersectV.z]
    --project the point to both sides to find the solutions
    solution1=pp+(sideB*perpV)
    solution2=pp-(sideB*perpV)
    return #(solution1,solution2)
)

其他回答

基于@Joe Skeen的python解决方案

def check_line_segment_circle_intersection(line, point, radious):
    """ Checks whether a point intersects with a line defined by two points.

    A `point` is list with two values: [2, 3]

    A `line` is list with two points: [point1, point2]

    """
    line_distance = distance(line[0], line[1])
    distance_start_to_point = distance(line[0], point)
    distance_end_to_point = distance(line[1], point)

    if (distance_start_to_point <= radious or distance_end_to_point <= radious):
        return True

    # angle between line and point with law of cosines
    numerator = (math.pow(distance_start_to_point, 2)
                 + math.pow(line_distance, 2)
                 - math.pow(distance_end_to_point, 2))
    denominator = 2 * distance_start_to_point * line_distance
    ratio = numerator / denominator
    ratio = ratio if ratio <= 1 else 1  # To account for float errors
    ratio = ratio if ratio >= -1 else -1  # To account for float errors
    angle = math.acos(ratio)

    # distance from the point to the line with sin projection
    distance_line_to_point = math.sin(angle) * distance_start_to_point

    if distance_line_to_point <= radious:
        point_projection_in_line = math.cos(angle) * distance_start_to_point
        # Intersection occurs whent the point projection in the line is less
        # than the line distance and positive
        return point_projection_in_line <= line_distance and point_projection_in_line >= 0
    return False

def distance(point1, point2):
    return math.sqrt(
        math.pow(point1[1] - point2[1], 2) +
        math.pow(point1[0] - point2[0], 2)
    )

You can find a point on a infinite line that is nearest to circle center by projecting vector AC onto vector AB. Calculate the distance between that point and circle center. If it is greater that R, there is no intersection. If the distance is equal to R, line is a tangent of the circle and the point nearest to circle center is actually the intersection point. If distance less that R, then there are 2 intersection points. They lie at the same distance from the point nearest to circle center. That distance can easily be calculated using Pythagorean theorem. Here's algorithm in pseudocode:

{
dX = bX - aX;
dY = bY - aY;
if ((dX == 0) && (dY == 0))
  {
  // A and B are the same points, no way to calculate intersection
  return;
  }

dl = (dX * dX + dY * dY);
t = ((cX - aX) * dX + (cY - aY) * dY) / dl;

// point on a line nearest to circle center
nearestX = aX + t * dX;
nearestY = aY + t * dY;

dist = point_dist(nearestX, nearestY, cX, cY);

if (dist == R)
  {
  // line segment touches circle; one intersection point
  iX = nearestX;
  iY = nearestY;

  if (t < 0 || t > 1)
    {
    // intersection point is not actually within line segment
    }
  }
else if (dist < R)
  {
  // two possible intersection points

  dt = sqrt(R * R - dist * dist) / sqrt(dl);

  // intersection point nearest to A
  t1 = t - dt;
  i1X = aX + t1 * dX;
  i1Y = aY + t1 * dY;
  if (t1 < 0 || t1 > 1)
    {
    // intersection point is not actually within line segment
    }

  // intersection point farthest from A
  t2 = t + dt;
  i2X = aX + t2 * dX;
  i2Y = aY + t2 * dY;
  if (t2 < 0 || t2 > 1)
    {
    // intersection point is not actually within line segment
    }
  }
else
  {
  // no intersection
  }
}

编辑:增加了代码来检查所找到的交点是否实际上在线段内。

这是一个Javascript实现。我的方法是首先将线段转换成一条无限的直线,然后找到交点。从那里,我检查是否找到的点在线段上。代码有良好的文档记录,您应该能够跟随。

您可以在这个现场演示中试用代码。 代码是从我的算法仓库里拿的。

// Small epsilon value
var EPS = 0.0000001;

// point (x, y)
function Point(x, y) {
  this.x = x;
  this.y = y;
}

// Circle with center at (x,y) and radius r
function Circle(x, y, r) {
  this.x = x;
  this.y = y;
  this.r = r;
}

// A line segment (x1, y1), (x2, y2)
function LineSegment(x1, y1, x2, y2) {
  var d = Math.sqrt( (x1-x2)*(x1-x2) + (y1-y2)*(y1-y2) );
  if (d < EPS) throw 'A point is not a line segment';
  this.x1 = x1; this.y1 = y1;
  this.x2 = x2; this.y2 = y2;
}

// An infinite line defined as: ax + by = c
function Line(a, b, c) {
  this.a = a; this.b = b; this.c = c;
  // Normalize line for good measure
  if (Math.abs(b) < EPS) {
    c /= a; a = 1; b = 0;
  } else { 
    a = (Math.abs(a) < EPS) ? 0 : a / b;
    c /= b; b = 1; 
  }
}

// Given a line in standard form: ax + by = c and a circle with 
// a center at (x,y) with radius r this method finds the intersection
// of the line and the circle (if any). 
function circleLineIntersection(circle, line) {

  var a = line.a, b = line.b, c = line.c;
  var x = circle.x, y = circle.y, r = circle.r;

  // Solve for the variable x with the formulas: ax + by = c (equation of line)
  // and (x-X)^2 + (y-Y)^2 = r^2 (equation of circle where X,Y are known) and expand to obtain quadratic:
  // (a^2 + b^2)x^2 + (2abY - 2ac + - 2b^2X)x + (b^2X^2 + b^2Y^2 - 2bcY + c^2 - b^2r^2) = 0
  // Then use quadratic formula X = (-b +- sqrt(a^2 - 4ac))/2a to find the 
  // roots of the equation (if they exist) and this will tell us the intersection points

  // In general a quadratic is written as: Ax^2 + Bx + C = 0
  // (a^2 + b^2)x^2 + (2abY - 2ac + - 2b^2X)x + (b^2X^2 + b^2Y^2 - 2bcY + c^2 - b^2r^2) = 0
  var A = a*a + b*b;
  var B = 2*a*b*y - 2*a*c - 2*b*b*x;
  var C = b*b*x*x + b*b*y*y - 2*b*c*y + c*c - b*b*r*r;

  // Use quadratic formula x = (-b +- sqrt(a^2 - 4ac))/2a to find the 
  // roots of the equation (if they exist).

  var D = B*B - 4*A*C;
  var x1,y1,x2,y2;

  // Handle vertical line case with b = 0
  if (Math.abs(b) < EPS) {

    // Line equation is ax + by = c, but b = 0, so x = c/a
    x1 = c/a;

    // No intersection
    if (Math.abs(x-x1) > r) return [];

    // Vertical line is tangent to circle
    if (Math.abs((x1-r)-x) < EPS || Math.abs((x1+r)-x) < EPS)
      return [new Point(x1, y)];

    var dx = Math.abs(x1 - x);
    var dy = Math.sqrt(r*r-dx*dx);

    // Vertical line cuts through circle
    return [
      new Point(x1,y+dy),
      new Point(x1,y-dy)
    ];

  // Line is tangent to circle
  } else if (Math.abs(D) < EPS) {

    x1 = -B/(2*A);
    y1 = (c - a*x1)/b;

    return [new Point(x1,y1)];

  // No intersection
  } else if (D < 0) {

    return [];

  } else {

    D = Math.sqrt(D);

    x1 = (-B+D)/(2*A);
    y1 = (c - a*x1)/b;

    x2 = (-B-D)/(2*A);
    y2 = (c - a*x2)/b;

    return [
      new Point(x1, y1),
      new Point(x2, y2)
    ];

  }

}

// Converts a line segment to a line in general form
function segmentToGeneralForm(x1,y1,x2,y2) {
  var a = y1 - y2;
  var b = x2 - x1;
  var c = x2*y1 - x1*y2;
  return new Line(a,b,c);
}

// Checks if a point 'pt' is inside the rect defined by (x1,y1), (x2,y2)
function pointInRectangle(pt,x1,y1,x2,y2) {
  var x = Math.min(x1,x2), X = Math.max(x1,x2);
  var y = Math.min(y1,y2), Y = Math.max(y1,y2);
  return x - EPS <= pt.x && pt.x <= X + EPS &&
         y - EPS <= pt.y && pt.y <= Y + EPS;
}

// Finds the intersection(s) of a line segment and a circle
function lineSegmentCircleIntersection(segment, circle) {

  var x1 = segment.x1, y1 = segment.y1, x2 = segment.x2, y2 = segment.y2;
  var line = segmentToGeneralForm(x1,y1,x2,y2);
  var pts = circleLineIntersection(circle, line);

  // No intersection
  if (pts.length === 0) return [];

  var pt1 = pts[0];
  var includePt1 = pointInRectangle(pt1,x1,y1,x2,y2);

  // Check for unique intersection
  if (pts.length === 1) {
    if (includePt1) return [pt1];
    return [];
  }

  var pt2 = pts[1];
  var includePt2 = pointInRectangle(pt2,x1,y1,x2,y2);

  // Check for remaining intersections
  if (includePt1 && includePt2) return [pt1, pt2];
  if (includePt1) return [pt1];
  if (includePt2) return [pt2];
  return [];

}

在此post circle中,通过检查圆心与线段上的点(Ipoint)之间的距离来检查线碰撞,该点表示从圆心到线段的法线N(图2)之间的交点。

(https://i.stack.imgur.com/3o6do.png)

在图像1中显示一个圆和一条直线,向量A指向线的起点,向量B指向线的终点,向量C指向圆的中心。现在我们必须找到向量E(从线起点到圆中心)和向量D(从线起点到线终点)这个计算如图1所示。

(https://i.stack.imgur.com/7098a.png)

在图2中,我们可以看到向量E通过向量E与单位向量D的“点积”投影到向量D上,点积的结果是标量Xp,表示向量N与向量D的直线起点与交点(Ipoint)之间的距离。 下一个向量X是由单位向量D和标量Xp相乘得到的。

现在我们需要找到向量Z(向量到Ipoint),它很容易它简单的向量加法向量A(在直线上的起点)和向量x。接下来我们需要处理特殊情况,我们必须检查是Ipoint在线段上,如果不是我们必须找出它是它的左边还是右边,我们将使用向量最接近来确定哪个点最接近圆。

(https://i.stack.imgur.com/p9WIr.png)

当投影Xp为负时,Ipoint在线段的左边,距离最近的向量等于线起点的向量,当投影Xp大于向量D的模时,距离最近的向量在线段的右边,距离最近的向量等于线终点的向量在其他情况下,距离最近的向量等于向量Z。

现在,当我们有最近的向量,我们需要找到从圆中心到Ipoint的向量(dist向量),很简单,我们只需要从中心向量减去最近的向量。接下来,检查向量距离的大小是否小于圆半径,如果是,那么它们就会碰撞,如果不是,就没有碰撞。

(https://i.stack.imgur.com/QJ63q.png)

最后,我们可以返回一些值来解决碰撞,最简单的方法是返回碰撞的重叠(从矢量dist magnitude中减去半径)和碰撞的轴,它的向量d。如果需要,交点是向量Z。

奇怪的是,我可以回答,但不能评论…… 我喜欢Multitaskpro的方法,它可以移动所有东西,使圆的中心落在原点上。不幸的是,他的代码中有两个问题。首先在平方根下的部分,你需要去掉双倍的幂。所以不是:

is underRadical = Math.pow((Math.pow(r,2)*(Math.pow(m,2)+1)),2)-Math.pow(b,2));

but:

under Radical = Math.pow(r,2)*(Math.pow(m,2)+1)) - Math.pow(b,2);

在最后的坐标中,他忘记把解移回来。所以不是:

var i1 = {x:t1,y:m*t1+b}

but:

Var i1 = {x:t1+c。x, y: m * t1 + b +陈守惠};

整个函数就变成:

function interceptOnCircle(p1, p2, c, r) {
    //p1 is the first line point
    //p2 is the second line point
    //c is the circle's center
    //r is the circle's radius

    var p3 = {x:p1.x - c.x, y:p1.y - c.y}; //shifted line points
    var p4 = {x:p2.x - c.x, y:p2.y - c.y};

    var m = (p4.y - p3.y) / (p4.x - p3.x); //slope of the line
    var b = p3.y - m * p3.x; //y-intercept of line

    var underRadical = Math.pow(r,2)*Math.pow(m,2) + Math.pow(r,2) - Math.pow(b,2); //the value under the square root sign 

    if (underRadical < 0) {
        //line completely missed
        return false;
    } else {
        var t1 = (-m*b + Math.sqrt(underRadical))/(Math.pow(m,2) + 1); //one of the intercept x's
        var t2 = (-m*b - Math.sqrt(underRadical))/(Math.pow(m,2) + 1); //other intercept's x
        var i1 = {x:t1+c.x, y:m*t1+b+c.y}; //intercept point 1
        var i2 = {x:t2+c.x, y:m*t2+b+c.y}; //intercept point 2
        return [i1, i2];
    }
}