我有一条从a到B的直线和一个半径为R的圆。

用什么算法来检查直线是否与圆相交?它在圆边的哪个坐标上?


当前回答

圆真的是一个坏人:)所以一个好办法是避免真正的圆,如果可以的话。如果你正在为游戏做碰撞检查,你可以进行一些简化,只做3个点积,并进行一些比较。

我称之为“胖点”或“瘦圈”。它是平行于线段方向上半径为0的椭圆。而是垂直于线段方向的全半径

首先,我会考虑重命名和切换坐标系统,以避免过多的数据:

s0s1 = B-A;
s0qp = C-A;
rSqr = r*r;

其次,hvec2f中的索引h意味着vector必须支持水平操作,如dot()/det()。这意味着它的组件被放置在一个单独的xmm寄存器中,以避免shuffle /hadd'ing/hsub'ing。现在我们开始,最简单的2D游戏碰撞检测的最佳性能版本:

bool fat_point_collides_segment(const hvec2f& s0qp, const hvec2f& s0s1, const float& rSqr) {
    auto a = dot(s0s1, s0s1);
    //if( a != 0 ) // if you haven't zero-length segments omit this, as it would save you 1 _mm_comineq_ss() instruction and 1 memory fetch
    {
        auto b = dot(s0s1, s0qp);
        auto t = b / a; // length of projection of s0qp onto s0s1
        //std::cout << "t = " << t << "\n";
        if ((t >= 0) && (t <= 1)) // 
        {
            auto c = dot(s0qp, s0qp);
            auto r2 = c - a * t * t;
            return (r2 <= rSqr); // true if collides
        }
    }   
    return false;
}

我怀疑你能进一步优化它。我正在用它进行神经网络驱动的赛车碰撞检测,处理数百万个迭代步骤。

其他回答

似乎没人考虑投影,我是不是完全跑题了?

将向量AC投影到AB上,投影的向量AD就得到了新的点D。 如果D和C之间的距离小于(或等于)R,我们有一个交点。

是这样的:

社区编辑:

对于稍后无意中看到这篇文章并想知道如何实现这样一个算法的人来说,这里是一个使用常见向量操作函数用JavaScript编写的通用实现。

/**
 * Returns the distance from line segment AB to point C
 */
function distanceSegmentToPoint(A, B, C) {
    // Compute vectors AC and AB
    const AC = sub(C, A);
    const AB = sub(B, A);

    // Get point D by taking the projection of AC onto AB then adding the offset of A
    const D = add(proj(AC, AB), A);

    const AD = sub(D, A);
    // D might not be on AB so calculate k of D down AB (aka solve AD = k * AB)
    // We can use either component, but choose larger value to reduce the chance of dividing by zero
    const k = Math.abs(AB.x) > Math.abs(AB.y) ? AD.x / AB.x : AD.y / AB.y;

    // Check if D is off either end of the line segment
    if (k <= 0.0) {
        return Math.sqrt(hypot2(C, A));
    } else if (k >= 1.0) {
        return Math.sqrt(hypot2(C, B));
    }

    return Math.sqrt(hypot2(C, D));
}

对于这个实现,我使用了两个常见的矢量操作函数,无论您在什么环境中工作,都可能已经提供了这些函数。但是,如果您还没有这些可用的功能,下面介绍如何实现它们。

// Define some common functions for working with vectors
const add = (a, b) => ({x: a.x + b.x, y: a.y + b.y});
const sub = (a, b) => ({x: a.x - b.x, y: a.y - b.y});
const dot = (a, b) => a.x * b.x + a.y * b.y;
const hypot2 = (a, b) => dot(sub(a, b), sub(a, b));

// Function for projecting some vector a onto b
function proj(a, b) {
    const k = dot(a, b) / dot(b, b);
    return {x: k * b.x, y: k * b.y};
}

这是一个Javascript实现。我的方法是首先将线段转换成一条无限的直线,然后找到交点。从那里,我检查是否找到的点在线段上。代码有良好的文档记录,您应该能够跟随。

您可以在这个现场演示中试用代码。 代码是从我的算法仓库里拿的。

// Small epsilon value
var EPS = 0.0000001;

// point (x, y)
function Point(x, y) {
  this.x = x;
  this.y = y;
}

// Circle with center at (x,y) and radius r
function Circle(x, y, r) {
  this.x = x;
  this.y = y;
  this.r = r;
}

// A line segment (x1, y1), (x2, y2)
function LineSegment(x1, y1, x2, y2) {
  var d = Math.sqrt( (x1-x2)*(x1-x2) + (y1-y2)*(y1-y2) );
  if (d < EPS) throw 'A point is not a line segment';
  this.x1 = x1; this.y1 = y1;
  this.x2 = x2; this.y2 = y2;
}

// An infinite line defined as: ax + by = c
function Line(a, b, c) {
  this.a = a; this.b = b; this.c = c;
  // Normalize line for good measure
  if (Math.abs(b) < EPS) {
    c /= a; a = 1; b = 0;
  } else { 
    a = (Math.abs(a) < EPS) ? 0 : a / b;
    c /= b; b = 1; 
  }
}

// Given a line in standard form: ax + by = c and a circle with 
// a center at (x,y) with radius r this method finds the intersection
// of the line and the circle (if any). 
function circleLineIntersection(circle, line) {

  var a = line.a, b = line.b, c = line.c;
  var x = circle.x, y = circle.y, r = circle.r;

  // Solve for the variable x with the formulas: ax + by = c (equation of line)
  // and (x-X)^2 + (y-Y)^2 = r^2 (equation of circle where X,Y are known) and expand to obtain quadratic:
  // (a^2 + b^2)x^2 + (2abY - 2ac + - 2b^2X)x + (b^2X^2 + b^2Y^2 - 2bcY + c^2 - b^2r^2) = 0
  // Then use quadratic formula X = (-b +- sqrt(a^2 - 4ac))/2a to find the 
  // roots of the equation (if they exist) and this will tell us the intersection points

  // In general a quadratic is written as: Ax^2 + Bx + C = 0
  // (a^2 + b^2)x^2 + (2abY - 2ac + - 2b^2X)x + (b^2X^2 + b^2Y^2 - 2bcY + c^2 - b^2r^2) = 0
  var A = a*a + b*b;
  var B = 2*a*b*y - 2*a*c - 2*b*b*x;
  var C = b*b*x*x + b*b*y*y - 2*b*c*y + c*c - b*b*r*r;

  // Use quadratic formula x = (-b +- sqrt(a^2 - 4ac))/2a to find the 
  // roots of the equation (if they exist).

  var D = B*B - 4*A*C;
  var x1,y1,x2,y2;

  // Handle vertical line case with b = 0
  if (Math.abs(b) < EPS) {

    // Line equation is ax + by = c, but b = 0, so x = c/a
    x1 = c/a;

    // No intersection
    if (Math.abs(x-x1) > r) return [];

    // Vertical line is tangent to circle
    if (Math.abs((x1-r)-x) < EPS || Math.abs((x1+r)-x) < EPS)
      return [new Point(x1, y)];

    var dx = Math.abs(x1 - x);
    var dy = Math.sqrt(r*r-dx*dx);

    // Vertical line cuts through circle
    return [
      new Point(x1,y+dy),
      new Point(x1,y-dy)
    ];

  // Line is tangent to circle
  } else if (Math.abs(D) < EPS) {

    x1 = -B/(2*A);
    y1 = (c - a*x1)/b;

    return [new Point(x1,y1)];

  // No intersection
  } else if (D < 0) {

    return [];

  } else {

    D = Math.sqrt(D);

    x1 = (-B+D)/(2*A);
    y1 = (c - a*x1)/b;

    x2 = (-B-D)/(2*A);
    y2 = (c - a*x2)/b;

    return [
      new Point(x1, y1),
      new Point(x2, y2)
    ];

  }

}

// Converts a line segment to a line in general form
function segmentToGeneralForm(x1,y1,x2,y2) {
  var a = y1 - y2;
  var b = x2 - x1;
  var c = x2*y1 - x1*y2;
  return new Line(a,b,c);
}

// Checks if a point 'pt' is inside the rect defined by (x1,y1), (x2,y2)
function pointInRectangle(pt,x1,y1,x2,y2) {
  var x = Math.min(x1,x2), X = Math.max(x1,x2);
  var y = Math.min(y1,y2), Y = Math.max(y1,y2);
  return x - EPS <= pt.x && pt.x <= X + EPS &&
         y - EPS <= pt.y && pt.y <= Y + EPS;
}

// Finds the intersection(s) of a line segment and a circle
function lineSegmentCircleIntersection(segment, circle) {

  var x1 = segment.x1, y1 = segment.y1, x2 = segment.x2, y2 = segment.y2;
  var line = segmentToGeneralForm(x1,y1,x2,y2);
  var pts = circleLineIntersection(circle, line);

  // No intersection
  if (pts.length === 0) return [];

  var pt1 = pts[0];
  var includePt1 = pointInRectangle(pt1,x1,y1,x2,y2);

  // Check for unique intersection
  if (pts.length === 1) {
    if (includePt1) return [pt1];
    return [];
  }

  var pt2 = pts[1];
  var includePt2 = pointInRectangle(pt2,x1,y1,x2,y2);

  // Check for remaining intersections
  if (includePt1 && includePt2) return [pt1, pt2];
  if (includePt1) return [pt1];
  if (includePt2) return [pt2];
  return [];

}

这里你需要一些数学知识:

假设A = (Xa, Ya), B = (Xb, Yb), C = (Xc, Yc)。从A到B的直线上的任意一点都有坐标(*Xa + (1-)Xb, * ya + (1-)*Yb) = P

如果点P的距离是R到C,它一定在圆上。你想要的是解决

distance(P, C) = R

这是

(alpha*Xa + (1-alpha)*Xb)^2 + (alpha*Ya + (1-alpha)*Yb)^2 = R^2
alpha^2*Xa^2 + alpha^2*Xb^2 - 2*alpha*Xb^2 + Xb^2 + alpha^2*Ya^2 + alpha^2*Yb^2 - 2*alpha*Yb^2 + Yb^2=R^2
(Xa^2 + Xb^2 + Ya^2 + Yb^2)*alpha^2 - 2*(Xb^2 + Yb^2)*alpha + (Xb^2 + Yb^2 - R^2) = 0

如果你将abc公式应用到这个方程来求解,并使用alpha的解来计算P的坐标,你会得到交点,如果存在的话。

以下是我在TypeScript中的解决方案,遵循@Mizipzor建议的想法(使用投影):

/**
 * Determines whether a line segment defined by a start and end point intersects with a sphere defined by a center point and a radius
 * @param a the start point of the line segment
 * @param b the end point of the line segment
 * @param c the center point of the sphere
 * @param r the radius of the sphere
 */
export function lineSphereIntersects(
  a: IPoint,
  b: IPoint,
  c: IPoint,
  r: number
): boolean {
  // find the three sides of the triangle formed by the three points
  const ab: number = distance(a, b);
  const ac: number = distance(a, c);
  const bc: number = distance(b, c);

  // check to see if either ends of the line segment are inside of the sphere
  if (ac < r || bc < r) {
    return true;
  }

  // find the angle between the line segment and the center of the sphere
  const numerator: number = Math.pow(ac, 2) + Math.pow(ab, 2) - Math.pow(bc, 2);
  const denominator: number = 2 * ac * ab;
  const cab: number = Math.acos(numerator / denominator);

  // find the distance from the center of the sphere and the line segment
  const cd: number = Math.sin(cab) * ac;

  // if the radius is at least as long as the distance between the center and the line
  if (r >= cd) {
    // find the distance between the line start and the point on the line closest to
    // the center of the sphere
    const ad: number = Math.cos(cab) * ac;
    // intersection occurs when the point on the line closest to the sphere center is
    // no further away than the end of the line
    return ad <= ab;
  }
  return false;
}

export function distance(a: IPoint, b: IPoint): number {
  return Math.sqrt(
    Math.pow(b.z - a.z, 2) + Math.pow(b.y - a.y, 2) + Math.pow(b.x - a.x, 2)
  );
}

export interface IPoint {
  x: number;
  y: number;
  z: number;
}

You can find a point on a infinite line that is nearest to circle center by projecting vector AC onto vector AB. Calculate the distance between that point and circle center. If it is greater that R, there is no intersection. If the distance is equal to R, line is a tangent of the circle and the point nearest to circle center is actually the intersection point. If distance less that R, then there are 2 intersection points. They lie at the same distance from the point nearest to circle center. That distance can easily be calculated using Pythagorean theorem. Here's algorithm in pseudocode:

{
dX = bX - aX;
dY = bY - aY;
if ((dX == 0) && (dY == 0))
  {
  // A and B are the same points, no way to calculate intersection
  return;
  }

dl = (dX * dX + dY * dY);
t = ((cX - aX) * dX + (cY - aY) * dY) / dl;

// point on a line nearest to circle center
nearestX = aX + t * dX;
nearestY = aY + t * dY;

dist = point_dist(nearestX, nearestY, cX, cY);

if (dist == R)
  {
  // line segment touches circle; one intersection point
  iX = nearestX;
  iY = nearestY;

  if (t < 0 || t > 1)
    {
    // intersection point is not actually within line segment
    }
  }
else if (dist < R)
  {
  // two possible intersection points

  dt = sqrt(R * R - dist * dist) / sqrt(dl);

  // intersection point nearest to A
  t1 = t - dt;
  i1X = aX + t1 * dX;
  i1Y = aY + t1 * dY;
  if (t1 < 0 || t1 > 1)
    {
    // intersection point is not actually within line segment
    }

  // intersection point farthest from A
  t2 = t + dt;
  i2X = aX + t2 * dX;
  i2Y = aY + t2 * dY;
  if (t2 < 0 || t2 > 1)
    {
    // intersection point is not actually within line segment
    }
  }
else
  {
  // no intersection
  }
}

编辑:增加了代码来检查所找到的交点是否实际上在线段内。