我有一条从a到B的直线和一个半径为R的圆。

用什么算法来检查直线是否与圆相交?它在圆边的哪个坐标上?


当前回答

采取

E是射线的起点, L是射线的端点, C是你测试的圆心 R是球面的半径

计算: d = L - E(射线方向矢量,从头到尾) f = E - C(从中心球到射线起点的向量)

然后通过…找到交点。 堵塞: P = E + t * d 这是一个参数方程 Px = Ex + tdx Py = Ey + tdy 成 (x - h)2 + (y - k)2 = r2 (h,k) =圆心。

注意:我们在这里将问题简化为2D,我们得到的解决方案也适用于3D

得到:

Expand x2 - 2xh + h2 + y2 - 2yk + k2 - r2 = 0 Plug x = ex + tdx y = ey + tdy ( ex + tdx )2 - 2( ex + tdx )h + h2 + ( ey + tdy )2 - 2( ey + tdy )k + k2 - r2 = 0 Explode ex2 + 2extdx + t2dx2 - 2exh - 2tdxh + h2 + ey2 + 2eytdy + t2dy2 - 2eyk - 2tdyk + k2 - r2 = 0 Group t2( dx2 + dy2 ) + 2t( exdx + eydy - dxh - dyk ) + ex2 + ey2 - 2exh - 2eyk + h2 + k2 - r2 = 0 Finally, t2( d · d ) + 2t( e · d - d · c ) + e · e - 2( e · c ) + c · c - r2 = 0 Where d is the vector d and · is the dot product. And then, t2( d · d ) + 2t( d · ( e - c ) ) + ( e - c ) · ( e - c ) - r2 = 0 Letting f = e - c t2( d · d ) + 2t( d · f ) + f · f - r2 = 0

所以我们得到: T2 *(d·d) + 2t*(f·d) + (f·f - r2) = 0

求解二次方程:

float a = d.Dot( d ) ;
float b = 2*f.Dot( d ) ;
float c = f.Dot( f ) - r*r ;

float discriminant = b*b-4*a*c;
if( discriminant < 0 )
{
  // no intersection
}
else
{
  // ray didn't totally miss sphere,
  // so there is a solution to
  // the equation.
  
  discriminant = sqrt( discriminant );

  // either solution may be on or off the ray so need to test both
  // t1 is always the smaller value, because BOTH discriminant and
  // a are nonnegative.
  float t1 = (-b - discriminant)/(2*a);
  float t2 = (-b + discriminant)/(2*a);

  // 3x HIT cases:
  //          -o->             --|-->  |            |  --|->
  // Impale(t1 hit,t2 hit), Poke(t1 hit,t2>1), ExitWound(t1<0, t2 hit), 

  // 3x MISS cases:
  //       ->  o                     o ->              | -> |
  // FallShort (t1>1,t2>1), Past (t1<0,t2<0), CompletelyInside(t1<0, t2>1)
  
  if( t1 >= 0 && t1 <= 1 )
  {
    // t1 is the intersection, and it's closer than t2
    // (since t1 uses -b - discriminant)
    // Impale, Poke
    return true ;
  }

  // here t1 didn't intersect so we are either started
  // inside the sphere or completely past it
  if( t2 >= 0 && t2 <= 1 )
  {
    // ExitWound
    return true ;
  }
  
  // no intn: FallShort, Past, CompletelyInside
  return false ;
}

其他回答

如果你找到了圆心(因为它是3D的,我想你是指球体而不是圆)和直线之间的距离,然后检查这个距离是否小于可以做到这一点的半径。

碰撞点显然是直线和球面之间最近的点(当你计算球面和直线之间的距离时,会计算出这个点)

点与线之间的距离: http://mathworld.wolfram.com/Point-LineDistance3-Dimensional.html

基于@Joe Skeen的python解决方案

def check_line_segment_circle_intersection(line, point, radious):
    """ Checks whether a point intersects with a line defined by two points.

    A `point` is list with two values: [2, 3]

    A `line` is list with two points: [point1, point2]

    """
    line_distance = distance(line[0], line[1])
    distance_start_to_point = distance(line[0], point)
    distance_end_to_point = distance(line[1], point)

    if (distance_start_to_point <= radious or distance_end_to_point <= radious):
        return True

    # angle between line and point with law of cosines
    numerator = (math.pow(distance_start_to_point, 2)
                 + math.pow(line_distance, 2)
                 - math.pow(distance_end_to_point, 2))
    denominator = 2 * distance_start_to_point * line_distance
    ratio = numerator / denominator
    ratio = ratio if ratio <= 1 else 1  # To account for float errors
    ratio = ratio if ratio >= -1 else -1  # To account for float errors
    angle = math.acos(ratio)

    # distance from the point to the line with sin projection
    distance_line_to_point = math.sin(angle) * distance_start_to_point

    if distance_line_to_point <= radious:
        point_projection_in_line = math.cos(angle) * distance_start_to_point
        # Intersection occurs whent the point projection in the line is less
        # than the line distance and positive
        return point_projection_in_line <= line_distance and point_projection_in_line >= 0
    return False

def distance(point1, point2):
    return math.sqrt(
        math.pow(point1[1] - point2[1], 2) +
        math.pow(point1[0] - point2[0], 2)
    )

似乎没人考虑投影,我是不是完全跑题了?

将向量AC投影到AB上,投影的向量AD就得到了新的点D。 如果D和C之间的距离小于(或等于)R,我们有一个交点。

是这样的:

社区编辑:

对于稍后无意中看到这篇文章并想知道如何实现这样一个算法的人来说,这里是一个使用常见向量操作函数用JavaScript编写的通用实现。

/**
 * Returns the distance from line segment AB to point C
 */
function distanceSegmentToPoint(A, B, C) {
    // Compute vectors AC and AB
    const AC = sub(C, A);
    const AB = sub(B, A);

    // Get point D by taking the projection of AC onto AB then adding the offset of A
    const D = add(proj(AC, AB), A);

    const AD = sub(D, A);
    // D might not be on AB so calculate k of D down AB (aka solve AD = k * AB)
    // We can use either component, but choose larger value to reduce the chance of dividing by zero
    const k = Math.abs(AB.x) > Math.abs(AB.y) ? AD.x / AB.x : AD.y / AB.y;

    // Check if D is off either end of the line segment
    if (k <= 0.0) {
        return Math.sqrt(hypot2(C, A));
    } else if (k >= 1.0) {
        return Math.sqrt(hypot2(C, B));
    }

    return Math.sqrt(hypot2(C, D));
}

对于这个实现,我使用了两个常见的矢量操作函数,无论您在什么环境中工作,都可能已经提供了这些函数。但是,如果您还没有这些可用的功能,下面介绍如何实现它们。

// Define some common functions for working with vectors
const add = (a, b) => ({x: a.x + b.x, y: a.y + b.y});
const sub = (a, b) => ({x: a.x - b.x, y: a.y - b.y});
const dot = (a, b) => a.x * b.x + a.y * b.y;
const hypot2 = (a, b) => dot(sub(a, b), sub(a, b));

// Function for projecting some vector a onto b
function proj(a, b) {
    const k = dot(a, b) / dot(b, b);
    return {x: k * b.x, y: k * b.y};
}

另一种解决方案,首先考虑不关心碰撞位置的情况。请注意,这个特定的函数是在假设xB和yB为向量输入的情况下构建的,但如果情况并非如此,则可以轻松修改。变量名在函数的开头定义

#Line segment points (A0, Af) defined by xA0, yA0, xAf, yAf; circle center denoted by xB, yB; rB=radius of circle, rA = radius of point (set to zero for your application)
def staticCollision_f(xA0, yA0, xAf, yAf, rA, xB, yB, rB): #note potential speed up here by casting all variables to same type and/or using Cython
    
    #Build equations of a line for linear agents (convert y = mx + b to ax + by + c = 0 means that a = -m, b = 1, c = -b
    m_v = (yAf - yA0) / (xAf - xA0)
    b_v = yAf - m_v * xAf
    rEff = rA + rB #radii are added since we are considering the agent path as a thin line

    #Check if points (circles) are within line segment (find center of line segment and check if circle is within radius of this point)
    segmentMask = np.sqrt( (yB - (yA0+yAf)/2)**2 + (xB - (xA0+xAf)/2)**2 ) < np.sqrt( (yAf - yA0)**2 + (xAf - xA0)**2 ) / 2 + rEff

    #Calculate perpendicular distance between line and a point
    dist_v = np.abs(-m_v * xB + yB - b_v) / np.sqrt(m_v**2 + 1)
    collisionMask = (dist_v < rEff) & segmentMask

    #return True if collision is detected
    return collisionMask, collisionMask.any()

如果您需要碰撞的位置,您可以使用这个站点上详细介绍的方法,并将其中一个代理的速度设置为零。这种方法也适用于矢量输入:http://twobitcoder.blogspot.com/2010/04/circle-collision-detection.html

奇怪的是,我可以回答,但不能评论…… 我喜欢Multitaskpro的方法,它可以移动所有东西,使圆的中心落在原点上。不幸的是,他的代码中有两个问题。首先在平方根下的部分,你需要去掉双倍的幂。所以不是:

is underRadical = Math.pow((Math.pow(r,2)*(Math.pow(m,2)+1)),2)-Math.pow(b,2));

but:

under Radical = Math.pow(r,2)*(Math.pow(m,2)+1)) - Math.pow(b,2);

在最后的坐标中,他忘记把解移回来。所以不是:

var i1 = {x:t1,y:m*t1+b}

but:

Var i1 = {x:t1+c。x, y: m * t1 + b +陈守惠};

整个函数就变成:

function interceptOnCircle(p1, p2, c, r) {
    //p1 is the first line point
    //p2 is the second line point
    //c is the circle's center
    //r is the circle's radius

    var p3 = {x:p1.x - c.x, y:p1.y - c.y}; //shifted line points
    var p4 = {x:p2.x - c.x, y:p2.y - c.y};

    var m = (p4.y - p3.y) / (p4.x - p3.x); //slope of the line
    var b = p3.y - m * p3.x; //y-intercept of line

    var underRadical = Math.pow(r,2)*Math.pow(m,2) + Math.pow(r,2) - Math.pow(b,2); //the value under the square root sign 

    if (underRadical < 0) {
        //line completely missed
        return false;
    } else {
        var t1 = (-m*b + Math.sqrt(underRadical))/(Math.pow(m,2) + 1); //one of the intercept x's
        var t2 = (-m*b - Math.sqrt(underRadical))/(Math.pow(m,2) + 1); //other intercept's x
        var i1 = {x:t1+c.x, y:m*t1+b+c.y}; //intercept point 1
        var i2 = {x:t2+c.x, y:m*t2+b+c.y}; //intercept point 2
        return [i1, i2];
    }
}