我有一条从a到B的直线和一个半径为R的圆。

用什么算法来检查直线是否与圆相交?它在圆边的哪个坐标上?


当前回答

好吧,我不会给你代码,但既然你已经标记了这个算法,我认为这对你来说无关紧要。 首先,你要得到一个垂直于这条直线的向量。

y = ax + c是一个未知变量c是未知变量 为了解决这个问题,计算直线经过圆心时的值。

也就是说, 将圆心的位置代入直线方程,解出c。 然后计算原直线与其法线的交点。

这样就能得到直线上离圆最近的点。 计算该点到圆中心之间的距离(使用矢量的大小)。 如果这个小于圆的半径,看,我们有一个交点!

其他回答

另一种解决方案,首先考虑不关心碰撞位置的情况。请注意,这个特定的函数是在假设xB和yB为向量输入的情况下构建的,但如果情况并非如此,则可以轻松修改。变量名在函数的开头定义

#Line segment points (A0, Af) defined by xA0, yA0, xAf, yAf; circle center denoted by xB, yB; rB=radius of circle, rA = radius of point (set to zero for your application)
def staticCollision_f(xA0, yA0, xAf, yAf, rA, xB, yB, rB): #note potential speed up here by casting all variables to same type and/or using Cython
    
    #Build equations of a line for linear agents (convert y = mx + b to ax + by + c = 0 means that a = -m, b = 1, c = -b
    m_v = (yAf - yA0) / (xAf - xA0)
    b_v = yAf - m_v * xAf
    rEff = rA + rB #radii are added since we are considering the agent path as a thin line

    #Check if points (circles) are within line segment (find center of line segment and check if circle is within radius of this point)
    segmentMask = np.sqrt( (yB - (yA0+yAf)/2)**2 + (xB - (xA0+xAf)/2)**2 ) < np.sqrt( (yAf - yA0)**2 + (xAf - xA0)**2 ) / 2 + rEff

    #Calculate perpendicular distance between line and a point
    dist_v = np.abs(-m_v * xB + yB - b_v) / np.sqrt(m_v**2 + 1)
    collisionMask = (dist_v < rEff) & segmentMask

    #return True if collision is detected
    return collisionMask, collisionMask.any()

如果您需要碰撞的位置,您可以使用这个站点上详细介绍的方法,并将其中一个代理的速度设置为零。这种方法也适用于矢量输入:http://twobitcoder.blogspot.com/2010/04/circle-collision-detection.html

我根据chmike给出的答案为iOS创建了这个函数

+ (NSArray *)intersectionPointsOfCircleWithCenter:(CGPoint)center withRadius:(float)radius toLinePoint1:(CGPoint)p1 andLinePoint2:(CGPoint)p2
{
    NSMutableArray *intersectionPoints = [NSMutableArray array];

    float Ax = p1.x;
    float Ay = p1.y;
    float Bx = p2.x;
    float By = p2.y;
    float Cx = center.x;
    float Cy = center.y;
    float R = radius;


    // compute the euclidean distance between A and B
    float LAB = sqrt( pow(Bx-Ax, 2)+pow(By-Ay, 2) );

    // compute the direction vector D from A to B
    float Dx = (Bx-Ax)/LAB;
    float Dy = (By-Ay)/LAB;

    // Now the line equation is x = Dx*t + Ax, y = Dy*t + Ay with 0 <= t <= 1.

    // compute the value t of the closest point to the circle center (Cx, Cy)
    float t = Dx*(Cx-Ax) + Dy*(Cy-Ay);

    // This is the projection of C on the line from A to B.

    // compute the coordinates of the point E on line and closest to C
    float Ex = t*Dx+Ax;
    float Ey = t*Dy+Ay;

    // compute the euclidean distance from E to C
    float LEC = sqrt( pow(Ex-Cx, 2)+ pow(Ey-Cy, 2) );

    // test if the line intersects the circle
    if( LEC < R )
    {
        // compute distance from t to circle intersection point
        float dt = sqrt( pow(R, 2) - pow(LEC,2) );

        // compute first intersection point
        float Fx = (t-dt)*Dx + Ax;
        float Fy = (t-dt)*Dy + Ay;

        // compute second intersection point
        float Gx = (t+dt)*Dx + Ax;
        float Gy = (t+dt)*Dy + Ay;

        [intersectionPoints addObject:[NSValue valueWithCGPoint:CGPointMake(Fx, Fy)]];
        [intersectionPoints addObject:[NSValue valueWithCGPoint:CGPointMake(Gx, Gy)]];
    }

    // else test if the line is tangent to circle
    else if( LEC == R ) {
        // tangent point to circle is E
        [intersectionPoints addObject:[NSValue valueWithCGPoint:CGPointMake(Ex, Ey)]];
    }
    else {
        // line doesn't touch circle
    }

    return intersectionPoints;
}

奇怪的是,我可以回答,但不能评论…… 我喜欢Multitaskpro的方法,它可以移动所有东西,使圆的中心落在原点上。不幸的是,他的代码中有两个问题。首先在平方根下的部分,你需要去掉双倍的幂。所以不是:

is underRadical = Math.pow((Math.pow(r,2)*(Math.pow(m,2)+1)),2)-Math.pow(b,2));

but:

under Radical = Math.pow(r,2)*(Math.pow(m,2)+1)) - Math.pow(b,2);

在最后的坐标中,他忘记把解移回来。所以不是:

var i1 = {x:t1,y:m*t1+b}

but:

Var i1 = {x:t1+c。x, y: m * t1 + b +陈守惠};

整个函数就变成:

function interceptOnCircle(p1, p2, c, r) {
    //p1 is the first line point
    //p2 is the second line point
    //c is the circle's center
    //r is the circle's radius

    var p3 = {x:p1.x - c.x, y:p1.y - c.y}; //shifted line points
    var p4 = {x:p2.x - c.x, y:p2.y - c.y};

    var m = (p4.y - p3.y) / (p4.x - p3.x); //slope of the line
    var b = p3.y - m * p3.x; //y-intercept of line

    var underRadical = Math.pow(r,2)*Math.pow(m,2) + Math.pow(r,2) - Math.pow(b,2); //the value under the square root sign 

    if (underRadical < 0) {
        //line completely missed
        return false;
    } else {
        var t1 = (-m*b + Math.sqrt(underRadical))/(Math.pow(m,2) + 1); //one of the intercept x's
        var t2 = (-m*b - Math.sqrt(underRadical))/(Math.pow(m,2) + 1); //other intercept's x
        var i1 = {x:t1+c.x, y:m*t1+b+c.y}; //intercept point 1
        var i2 = {x:t2+c.x, y:m*t2+b+c.y}; //intercept point 2
        return [i1, i2];
    }
}

You can find a point on a infinite line that is nearest to circle center by projecting vector AC onto vector AB. Calculate the distance between that point and circle center. If it is greater that R, there is no intersection. If the distance is equal to R, line is a tangent of the circle and the point nearest to circle center is actually the intersection point. If distance less that R, then there are 2 intersection points. They lie at the same distance from the point nearest to circle center. That distance can easily be calculated using Pythagorean theorem. Here's algorithm in pseudocode:

{
dX = bX - aX;
dY = bY - aY;
if ((dX == 0) && (dY == 0))
  {
  // A and B are the same points, no way to calculate intersection
  return;
  }

dl = (dX * dX + dY * dY);
t = ((cX - aX) * dX + (cY - aY) * dY) / dl;

// point on a line nearest to circle center
nearestX = aX + t * dX;
nearestY = aY + t * dY;

dist = point_dist(nearestX, nearestY, cX, cY);

if (dist == R)
  {
  // line segment touches circle; one intersection point
  iX = nearestX;
  iY = nearestY;

  if (t < 0 || t > 1)
    {
    // intersection point is not actually within line segment
    }
  }
else if (dist < R)
  {
  // two possible intersection points

  dt = sqrt(R * R - dist * dist) / sqrt(dl);

  // intersection point nearest to A
  t1 = t - dt;
  i1X = aX + t1 * dX;
  i1Y = aY + t1 * dY;
  if (t1 < 0 || t1 > 1)
    {
    // intersection point is not actually within line segment
    }

  // intersection point farthest from A
  t2 = t + dt;
  i2X = aX + t2 * dX;
  i2Y = aY + t2 * dY;
  if (t2 < 0 || t2 > 1)
    {
    // intersection point is not actually within line segment
    }
  }
else
  {
  // no intersection
  }
}

编辑:增加了代码来检查所找到的交点是否实际上在线段内。

我知道自从这个帖子被打开以来已经有一段时间了。根据chmike给出的答案,经Aqib Mumtaz改进。他们给出了一个很好的答案,但只适用于无限线,就像Aqib说的那样。所以我添加了一些比较来知道线段是否与圆接触,我用Python写的。

def LineIntersectCircle(c, r, p1, p2):
    #p1 is the first line point
    #p2 is the second line point
    #c is the circle's center
    #r is the circle's radius

    p3 = [p1[0]-c[0], p1[1]-c[1]]
    p4 = [p2[0]-c[0], p2[1]-c[1]]

    m = (p4[1] - p3[1]) / (p4[0] - p3[0])
    b = p3[1] - m * p3[0]

    underRadical = math.pow(r,2)*math.pow(m,2) + math.pow(r,2) - math.pow(b,2)

    if (underRadical < 0):
        print("NOT")
    else:
        t1 = (-2*m*b+2*math.sqrt(underRadical)) / (2 * math.pow(m,2) + 2)
        t2 = (-2*m*b-2*math.sqrt(underRadical)) / (2 * math.pow(m,2) + 2)
        i1 = [t1+c[0], m * t1 + b + c[1]]
        i2 = [t2+c[0], m * t2 + b + c[1]]

        if p1[0] > p2[0]:                                           #Si el punto 1 es mayor al 2 en X
            if (i1[0] < p1[0]) and (i1[0] > p2[0]):                 #Si el punto iX esta entre 2 y 1 en X
                if p1[1] > p2[1]:                                   #Si el punto 1 es mayor al 2 en Y
                    if (i1[1] < p1[1]) and (i1[1] > p2[1]):         #Si el punto iy esta entre 2 y 1
                        print("Intersection")
                if p1[1] < p2[1]:                                   #Si el punto 2 es mayo al 2 en Y
                    if (i1[1] > p1[1]) and (i1[1] < p2[1]):         #Si el punto iy esta entre 1 y 2
                        print("Intersection")

        if p1[0] < p2[0]:                                           #Si el punto 2 es mayor al 1 en X
            if (i1[0] > p1[0]) and (i1[0] < p2[0]):                 #Si el punto iX esta entre 1 y 2 en X
                if p1[1] > p2[1]:                                   #Si el punto 1 es mayor al 2 en Y
                    if (i1[1] < p1[1]) and (i1[1] > p2[1]):         #Si el punto iy esta entre 2 y 1
                        print("Intersection")
                if p1[1] < p2[1]:                                   #Si el punto 2 es mayo al 2 en Y
                    if (i1[1] > p1[1]) and (i1[1] < p2[1]):         #Si el punto iy esta entre 1 y 2
                        print("Intersection")

        if p1[0] > p2[0]:                                           #Si el punto 1 es mayor al 2 en X
            if (i2[0] < p1[0]) and (i2[0] > p2[0]):                 #Si el punto iX esta entre 2 y 1 en X
                if p1[1] > p2[1]:                                   #Si el punto 1 es mayor al 2 en Y
                    if (i2[1] < p1[1]) and (i2[1] > p2[1]):         #Si el punto iy esta entre 2 y 1
                        print("Intersection")
                if p1[1] < p2[1]:                                   #Si el punto 2 es mayo al 2 en Y
                    if (i2[1] > p1[1]) and (i2[1] < p2[1]):         #Si el punto iy esta entre 1 y 2
                        print("Intersection")

        if p1[0] < p2[0]:                                           #Si el punto 2 es mayor al 1 en X
            if (i2[0] > p1[0]) and (i2[0] < p2[0]):                 #Si el punto iX esta entre 1 y 2 en X
                if p1[1] > p2[1]:                                   #Si el punto 1 es mayor al 2 en Y
                    if (i2[1] < p1[1]) and (i2[1] > p2[1]):         #Si el punto iy esta entre 2 y 1
                        print("Intersection")
                if p1[1] < p2[1]:                                   #Si el punto 2 es mayo al 2 en Y
                    if (i2[1] > p1[1]) and (i2[1] < p2[1]):         #Si el punto iy esta entre 1 y 2
                        print("Intersection")