我有一条从a到B的直线和一个半径为R的圆。
用什么算法来检查直线是否与圆相交?它在圆边的哪个坐标上?
我有一条从a到B的直线和一个半径为R的圆。
用什么算法来检查直线是否与圆相交?它在圆边的哪个坐标上?
当前回答
好吧,我不会给你代码,但既然你已经标记了这个算法,我认为这对你来说无关紧要。 首先,你要得到一个垂直于这条直线的向量。
y = ax + c是一个未知变量c是未知变量 为了解决这个问题,计算直线经过圆心时的值。
也就是说, 将圆心的位置代入直线方程,解出c。 然后计算原直线与其法线的交点。
这样就能得到直线上离圆最近的点。 计算该点到圆中心之间的距离(使用矢量的大小)。 如果这个小于圆的半径,看,我们有一个交点!
其他回答
我写了一个小脚本,通过将圆的中心点投影到直线上来测试相交。
vector distVector = centerPoint - projectedPoint;
if(distVector.length() < circle.radius)
{
double distance = circle.radius - distVector.length();
vector moveVector = distVector.normalize() * distance;
circle.move(moveVector);
}
http://jsfiddle.net/ercang/ornh3594/1/
如果需要检查与线段的碰撞,还需要考虑圆心到起点和终点的距离。
vector distVector = centerPoint - startPoint;
if(distVector.length() < circle.radius)
{
double distance = circle.radius - distVector.length();
vector moveVector = distVector.normalize() * distance;
circle.move(moveVector);
}
https://jsfiddle.net/ercang/menp0991/
下面是JavaScript的一个很好的解决方案(包括所有必需的数学和实时插图) https://bl.ocks.org/milkbread/11000965
尽管该解决方案中的is_on函数需要修改:
函数is_on(a, b, c) { return Math.abs(距离(a,c) +距离(c,b) -距离(a,b))<0.000001; }
以下是我在TypeScript中的解决方案,遵循@Mizipzor建议的想法(使用投影):
/**
* Determines whether a line segment defined by a start and end point intersects with a sphere defined by a center point and a radius
* @param a the start point of the line segment
* @param b the end point of the line segment
* @param c the center point of the sphere
* @param r the radius of the sphere
*/
export function lineSphereIntersects(
a: IPoint,
b: IPoint,
c: IPoint,
r: number
): boolean {
// find the three sides of the triangle formed by the three points
const ab: number = distance(a, b);
const ac: number = distance(a, c);
const bc: number = distance(b, c);
// check to see if either ends of the line segment are inside of the sphere
if (ac < r || bc < r) {
return true;
}
// find the angle between the line segment and the center of the sphere
const numerator: number = Math.pow(ac, 2) + Math.pow(ab, 2) - Math.pow(bc, 2);
const denominator: number = 2 * ac * ab;
const cab: number = Math.acos(numerator / denominator);
// find the distance from the center of the sphere and the line segment
const cd: number = Math.sin(cab) * ac;
// if the radius is at least as long as the distance between the center and the line
if (r >= cd) {
// find the distance between the line start and the point on the line closest to
// the center of the sphere
const ad: number = Math.cos(cab) * ac;
// intersection occurs when the point on the line closest to the sphere center is
// no further away than the end of the line
return ad <= ab;
}
return false;
}
export function distance(a: IPoint, b: IPoint): number {
return Math.sqrt(
Math.pow(b.z - a.z, 2) + Math.pow(b.y - a.y, 2) + Math.pow(b.x - a.x, 2)
);
}
export interface IPoint {
x: number;
y: number;
z: number;
}
圆真的是一个坏人:)所以一个好办法是避免真正的圆,如果可以的话。如果你正在为游戏做碰撞检查,你可以进行一些简化,只做3个点积,并进行一些比较。
我称之为“胖点”或“瘦圈”。它是平行于线段方向上半径为0的椭圆。而是垂直于线段方向的全半径
首先,我会考虑重命名和切换坐标系统,以避免过多的数据:
s0s1 = B-A;
s0qp = C-A;
rSqr = r*r;
其次,hvec2f中的索引h意味着vector必须支持水平操作,如dot()/det()。这意味着它的组件被放置在一个单独的xmm寄存器中,以避免shuffle /hadd'ing/hsub'ing。现在我们开始,最简单的2D游戏碰撞检测的最佳性能版本:
bool fat_point_collides_segment(const hvec2f& s0qp, const hvec2f& s0s1, const float& rSqr) {
auto a = dot(s0s1, s0s1);
//if( a != 0 ) // if you haven't zero-length segments omit this, as it would save you 1 _mm_comineq_ss() instruction and 1 memory fetch
{
auto b = dot(s0s1, s0qp);
auto t = b / a; // length of projection of s0qp onto s0s1
//std::cout << "t = " << t << "\n";
if ((t >= 0) && (t <= 1)) //
{
auto c = dot(s0qp, s0qp);
auto r2 = c - a * t * t;
return (r2 <= rSqr); // true if collides
}
}
return false;
}
我怀疑你能进一步优化它。我正在用它进行神经网络驱动的赛车碰撞检测,处理数百万个迭代步骤。
另一个在c#(部分圆类)。 经过测试,工作就像一个魅力。
public class Circle : IEquatable<Circle>
{
// ******************************************************************
// The center of a circle
private Point _center;
// The radius of a circle
private double _radius;
// ******************************************************************
/// <summary>
/// Find all intersections (0, 1, 2) of the circle with a line defined by its 2 points.
/// Using: http://math.stackexchange.com/questions/228841/how-do-i-calculate-the-intersections-of-a-straight-line-and-a-circle
/// Note: p is the Center.X and q is Center.Y
/// </summary>
/// <param name="linePoint1"></param>
/// <param name="linePoint2"></param>
/// <returns></returns>
public List<Point> GetIntersections(Point linePoint1, Point linePoint2)
{
List<Point> intersections = new List<Point>();
double dx = linePoint2.X - linePoint1.X;
if (dx.AboutEquals(0)) // Straight vertical line
{
if (linePoint1.X.AboutEquals(Center.X - Radius) || linePoint1.X.AboutEquals(Center.X + Radius))
{
Point pt = new Point(linePoint1.X, Center.Y);
intersections.Add(pt);
}
else if (linePoint1.X > Center.X - Radius && linePoint1.X < Center.X + Radius)
{
double x = linePoint1.X - Center.X;
Point pt = new Point(linePoint1.X, Center.Y + Math.Sqrt(Radius * Radius - (x * x)));
intersections.Add(pt);
pt = new Point(linePoint1.X, Center.Y - Math.Sqrt(Radius * Radius - (x * x)));
intersections.Add(pt);
}
return intersections;
}
// Line function (y = mx + b)
double dy = linePoint2.Y - linePoint1.Y;
double m = dy / dx;
double b = linePoint1.Y - m * linePoint1.X;
double A = m * m + 1;
double B = 2 * (m * b - m * _center.Y - Center.X);
double C = Center.X * Center.X + Center.Y * Center.Y - Radius * Radius - 2 * b * Center.Y + b * b;
double discriminant = B * B - 4 * A * C;
if (discriminant < 0)
{
return intersections; // there is no intersections
}
if (discriminant.AboutEquals(0)) // Tangeante (touch on 1 point only)
{
double x = -B / (2 * A);
double y = m * x + b;
intersections.Add(new Point(x, y));
}
else // Secant (touch on 2 points)
{
double x = (-B + Math.Sqrt(discriminant)) / (2 * A);
double y = m * x + b;
intersections.Add(new Point(x, y));
x = (-B - Math.Sqrt(discriminant)) / (2 * A);
y = m * x + b;
intersections.Add(new Point(x, y));
}
return intersections;
}
// ******************************************************************
// Get the center
[XmlElement("Center")]
public Point Center
{
get { return _center; }
set
{
_center = value;
}
}
// ******************************************************************
// Get the radius
[XmlElement]
public double Radius
{
get { return _radius; }
set { _radius = value; }
}
//// ******************************************************************
//[XmlArrayItemAttribute("DoublePoint")]
//public List<Point> Coordinates
//{
// get { return _coordinates; }
//}
// ******************************************************************
// Construct a circle without any specification
public Circle()
{
_center.X = 0;
_center.Y = 0;
_radius = 0;
}
// ******************************************************************
// Construct a circle without any specification
public Circle(double radius)
{
_center.X = 0;
_center.Y = 0;
_radius = radius;
}
// ******************************************************************
// Construct a circle with the specified circle
public Circle(Circle circle)
{
_center = circle._center;
_radius = circle._radius;
}
// ******************************************************************
// Construct a circle with the specified center and radius
public Circle(Point center, double radius)
{
_center = center;
_radius = radius;
}
// ******************************************************************
// Construct a circle based on one point
public Circle(Point center)
{
_center = center;
_radius = 0;
}
// ******************************************************************
// Construct a circle based on two points
public Circle(Point p1, Point p2)
{
Circle2Points(p1, p2);
}
要求:
using System;
namespace Mathematic
{
public static class DoubleExtension
{
// ******************************************************************
// Base on Hans Passant Answer on:
// http://stackoverflow.com/questions/2411392/double-epsilon-for-equality-greater-than-less-than-less-than-or-equal-to-gre
/// <summary>
/// Compare two double taking in account the double precision potential error.
/// Take care: truncation errors accumulate on calculation. More you do, more you should increase the epsilon.
public static bool AboutEquals(this double value1, double value2)
{
if (double.IsPositiveInfinity(value1))
return double.IsPositiveInfinity(value2);
if (double.IsNegativeInfinity(value1))
return double.IsNegativeInfinity(value2);
if (double.IsNaN(value1))
return double.IsNaN(value2);
double epsilon = Math.Max(Math.Abs(value1), Math.Abs(value2)) * 1E-15;
return Math.Abs(value1 - value2) <= epsilon;
}
// ******************************************************************
// Base on Hans Passant Answer on:
// http://stackoverflow.com/questions/2411392/double-epsilon-for-equality-greater-than-less-than-less-than-or-equal-to-gre
/// <summary>
/// Compare two double taking in account the double precision potential error.
/// Take care: truncation errors accumulate on calculation. More you do, more you should increase the epsilon.
/// You get really better performance when you can determine the contextual epsilon first.
/// </summary>
/// <param name="value1"></param>
/// <param name="value2"></param>
/// <param name="precalculatedContextualEpsilon"></param>
/// <returns></returns>
public static bool AboutEquals(this double value1, double value2, double precalculatedContextualEpsilon)
{
if (double.IsPositiveInfinity(value1))
return double.IsPositiveInfinity(value2);
if (double.IsNegativeInfinity(value1))
return double.IsNegativeInfinity(value2);
if (double.IsNaN(value1))
return double.IsNaN(value2);
return Math.Abs(value1 - value2) <= precalculatedContextualEpsilon;
}
// ******************************************************************
public static double GetContextualEpsilon(this double biggestPossibleContextualValue)
{
return biggestPossibleContextualValue * 1E-15;
}
// ******************************************************************
/// <summary>
/// Mathlab equivalent
/// </summary>
/// <param name="dividend"></param>
/// <param name="divisor"></param>
/// <returns></returns>
public static double Mod(this double dividend, double divisor)
{
return dividend - System.Math.Floor(dividend / divisor) * divisor;
}
// ******************************************************************
}
}