我有一条从a到B的直线和一个半径为R的圆。
用什么算法来检查直线是否与圆相交?它在圆边的哪个坐标上?
我有一条从a到B的直线和一个半径为R的圆。
用什么算法来检查直线是否与圆相交?它在圆边的哪个坐标上?
当前回答
另一种方法使用三角形ABC面积公式。交点检验比投影法简单高效,但求交点坐标需要更多的工作。至少它会被推迟到需要的时候。
三角形面积的计算公式为:area = bh/2
b是底长,h是高。我们选择线段AB作为底,使h是圆心C到直线的最短距离。
因为三角形的面积也可以用向量点积来计算,所以我们可以确定h。
// compute the triangle area times 2 (area = area2/2)
area2 = abs( (Bx-Ax)*(Cy-Ay) - (Cx-Ax)(By-Ay) )
// compute the AB segment length
LAB = sqrt( (Bx-Ax)² + (By-Ay)² )
// compute the triangle height
h = area2/LAB
// if the line intersects the circle
if( h < R )
{
...
}
更新1:
您可以通过使用这里描述的快速平方根倒数计算来优化代码,以获得1/LAB的良好近似值。
计算交点并不难。开始了
// compute the line AB direction vector components
Dx = (Bx-Ax)/LAB
Dy = (By-Ay)/LAB
// compute the distance from A toward B of closest point to C
t = Dx*(Cx-Ax) + Dy*(Cy-Ay)
// t should be equal to sqrt( (Cx-Ax)² + (Cy-Ay)² - h² )
// compute the intersection point distance from t
dt = sqrt( R² - h² )
// compute first intersection point coordinate
Ex = Ax + (t-dt)*Dx
Ey = Ay + (t-dt)*Dy
// compute second intersection point coordinate
Fx = Ax + (t+dt)*Dx
Fy = Ay + (t+dt)*Dy
如果h = R,则直线AB与圆相切,且值dt = 0, E = F。点的坐标为E和F的坐标。
如果在应用程序中出现这种情况,您应该检查A与B是否不同,并且段长度不为空。
其他回答
虽然我认为使用线圆交点,然后检查交点是否在端点之间更好,可能更便宜,但我想添加这个更直观的解决方案。
我喜欢把这个问题想象成“香肠上的点问题”,在不改变算法的情况下,它可以在任何维度上工作。 这个解找不到交点。
以下是我想到的:
(我使用“小于”,但“小于或等于”也可以使用,这取决于我们测试的内容。)
确保Circle_Point小于到无限线的半径距离。(这里使用最喜欢的方法)。 计算从两个Segment_Points到Circle_Point的距离。 测试较大的Circle_Point-Segment_Point距离是否小于根号(Segment_Length^2+Radius^2)。 (这是从一个分段点到一个理论点的距离,也就是从另一个分段点到无限线(直角)的半径距离。见图片)。
3 t。如果为true: Circle_Point在sausage内部。 3 f。如果为false:如果较小的Circle_Point- segment_point距离小于Radius,则Circle_Point在sausage内部。
图片:最粗的线段是选定的线段,没有示例圆。有点粗糙,有些像素有点不对。
function boolean pointInSausage(sp1,sp2,r,c) {
if ( !(pointLineDist(c,sp1,sp2) < r) ) {
return false;
}
double a = dist(sp1,c);
double b = dist(sp2,c);
double l;
double s;
if (a>b) {
l = a;
s = b;
} else {
l = b;
s = a;
}
double segLength = dist(sp1,sp2);
if ( l < sqrt(segLength*segLength+r*r) ) {
return true;
}
return s < r;
}
如果发现任何问题,告诉我,我会编辑或撤回。
这个Java函数返回一个DVec2对象。它用DVec2表示圆心,用DVec2表示半径,用Line表示直线。
public static DVec2 CircLine(DVec2 C, double r, Line line)
{
DVec2 A = line.p1;
DVec2 B = line.p2;
DVec2 P;
DVec2 AC = new DVec2( C );
AC.sub(A);
DVec2 AB = new DVec2( B );
AB.sub(A);
double ab2 = AB.dot(AB);
double acab = AC.dot(AB);
double t = acab / ab2;
if (t < 0.0)
t = 0.0;
else if (t > 1.0)
t = 1.0;
//P = A + t * AB;
P = new DVec2( AB );
P.mul( t );
P.add( A );
DVec2 H = new DVec2( P );
H.sub( C );
double h2 = H.dot(H);
double r2 = r * r;
if(h2 > r2)
return null;
else
return P;
}
我知道自从这个帖子被打开以来已经有一段时间了。根据chmike给出的答案,经Aqib Mumtaz改进。他们给出了一个很好的答案,但只适用于无限线,就像Aqib说的那样。所以我添加了一些比较来知道线段是否与圆接触,我用Python写的。
def LineIntersectCircle(c, r, p1, p2):
#p1 is the first line point
#p2 is the second line point
#c is the circle's center
#r is the circle's radius
p3 = [p1[0]-c[0], p1[1]-c[1]]
p4 = [p2[0]-c[0], p2[1]-c[1]]
m = (p4[1] - p3[1]) / (p4[0] - p3[0])
b = p3[1] - m * p3[0]
underRadical = math.pow(r,2)*math.pow(m,2) + math.pow(r,2) - math.pow(b,2)
if (underRadical < 0):
print("NOT")
else:
t1 = (-2*m*b+2*math.sqrt(underRadical)) / (2 * math.pow(m,2) + 2)
t2 = (-2*m*b-2*math.sqrt(underRadical)) / (2 * math.pow(m,2) + 2)
i1 = [t1+c[0], m * t1 + b + c[1]]
i2 = [t2+c[0], m * t2 + b + c[1]]
if p1[0] > p2[0]: #Si el punto 1 es mayor al 2 en X
if (i1[0] < p1[0]) and (i1[0] > p2[0]): #Si el punto iX esta entre 2 y 1 en X
if p1[1] > p2[1]: #Si el punto 1 es mayor al 2 en Y
if (i1[1] < p1[1]) and (i1[1] > p2[1]): #Si el punto iy esta entre 2 y 1
print("Intersection")
if p1[1] < p2[1]: #Si el punto 2 es mayo al 2 en Y
if (i1[1] > p1[1]) and (i1[1] < p2[1]): #Si el punto iy esta entre 1 y 2
print("Intersection")
if p1[0] < p2[0]: #Si el punto 2 es mayor al 1 en X
if (i1[0] > p1[0]) and (i1[0] < p2[0]): #Si el punto iX esta entre 1 y 2 en X
if p1[1] > p2[1]: #Si el punto 1 es mayor al 2 en Y
if (i1[1] < p1[1]) and (i1[1] > p2[1]): #Si el punto iy esta entre 2 y 1
print("Intersection")
if p1[1] < p2[1]: #Si el punto 2 es mayo al 2 en Y
if (i1[1] > p1[1]) and (i1[1] < p2[1]): #Si el punto iy esta entre 1 y 2
print("Intersection")
if p1[0] > p2[0]: #Si el punto 1 es mayor al 2 en X
if (i2[0] < p1[0]) and (i2[0] > p2[0]): #Si el punto iX esta entre 2 y 1 en X
if p1[1] > p2[1]: #Si el punto 1 es mayor al 2 en Y
if (i2[1] < p1[1]) and (i2[1] > p2[1]): #Si el punto iy esta entre 2 y 1
print("Intersection")
if p1[1] < p2[1]: #Si el punto 2 es mayo al 2 en Y
if (i2[1] > p1[1]) and (i2[1] < p2[1]): #Si el punto iy esta entre 1 y 2
print("Intersection")
if p1[0] < p2[0]: #Si el punto 2 es mayor al 1 en X
if (i2[0] > p1[0]) and (i2[0] < p2[0]): #Si el punto iX esta entre 1 y 2 en X
if p1[1] > p2[1]: #Si el punto 1 es mayor al 2 en Y
if (i2[1] < p1[1]) and (i2[1] > p2[1]): #Si el punto iy esta entre 2 y 1
print("Intersection")
if p1[1] < p2[1]: #Si el punto 2 es mayo al 2 en Y
if (i2[1] > p1[1]) and (i2[1] < p2[1]): #Si el punto iy esta entre 1 y 2
print("Intersection")
奇怪的是,我可以回答,但不能评论…… 我喜欢Multitaskpro的方法,它可以移动所有东西,使圆的中心落在原点上。不幸的是,他的代码中有两个问题。首先在平方根下的部分,你需要去掉双倍的幂。所以不是:
is underRadical = Math.pow((Math.pow(r,2)*(Math.pow(m,2)+1)),2)-Math.pow(b,2));
but:
under Radical = Math.pow(r,2)*(Math.pow(m,2)+1)) - Math.pow(b,2);
在最后的坐标中,他忘记把解移回来。所以不是:
var i1 = {x:t1,y:m*t1+b}
but:
Var i1 = {x:t1+c。x, y: m * t1 + b +陈守惠};
整个函数就变成:
function interceptOnCircle(p1, p2, c, r) {
//p1 is the first line point
//p2 is the second line point
//c is the circle's center
//r is the circle's radius
var p3 = {x:p1.x - c.x, y:p1.y - c.y}; //shifted line points
var p4 = {x:p2.x - c.x, y:p2.y - c.y};
var m = (p4.y - p3.y) / (p4.x - p3.x); //slope of the line
var b = p3.y - m * p3.x; //y-intercept of line
var underRadical = Math.pow(r,2)*Math.pow(m,2) + Math.pow(r,2) - Math.pow(b,2); //the value under the square root sign
if (underRadical < 0) {
//line completely missed
return false;
} else {
var t1 = (-m*b + Math.sqrt(underRadical))/(Math.pow(m,2) + 1); //one of the intercept x's
var t2 = (-m*b - Math.sqrt(underRadical))/(Math.pow(m,2) + 1); //other intercept's x
var i1 = {x:t1+c.x, y:m*t1+b+c.y}; //intercept point 1
var i2 = {x:t2+c.x, y:m*t2+b+c.y}; //intercept point 2
return [i1, i2];
}
}
这里是一个用golang写的解决方案。这个方法和这里发布的其他一些答案类似,但不完全相同。它易于实现,并已经过测试。以下是步骤:
Translate coordinates so that the circle is at the origin. Express the line segment as parametrized functions of t for both the x and y coordinates. If t is 0, the function's values are one end point of the segment, and if t is 1, the function's values are the other end point. Solve, if possible, the quadratic equation resulting from constraining values of t that produce x, y coordinates with distances from the origin equal to the circle's radius. Throw out solutions where t is < 0 or > 1 ( <= 0 or >= 1 for an open segment). Those points are not contained in the segment. Translate back to original coordinates.
这里导出了二次曲线的A、B和C的值,其中(n-et)和(m-dt)分别是直线x坐标和y坐标的方程。R是圆的半径。
(n-et)(n-et) + (m-dt)(m-dt) = rr
nn - 2etn + etet + mm - 2mdt + dtdt = rr
(ee+dd)tt - 2(en + dm)t + nn + mm - rr = 0
因此A = ee+dd, B = - 2(en + dm), C = nn + mm - rr。
下面是函数的golang代码:
package geom
import (
"math"
)
// SegmentCircleIntersection return points of intersection between a circle and
// a line segment. The Boolean intersects returns true if one or
// more solutions exist. If only one solution exists,
// x1 == x2 and y1 == y2.
// s1x and s1y are coordinates for one end point of the segment, and
// s2x and s2y are coordinates for the other end of the segment.
// cx and cy are the coordinates of the center of the circle and
// r is the radius of the circle.
func SegmentCircleIntersection(s1x, s1y, s2x, s2y, cx, cy, r float64) (x1, y1, x2, y2 float64, intersects bool) {
// (n-et) and (m-dt) are expressions for the x and y coordinates
// of a parameterized line in coordinates whose origin is the
// center of the circle.
// When t = 0, (n-et) == s1x - cx and (m-dt) == s1y - cy
// When t = 1, (n-et) == s2x - cx and (m-dt) == s2y - cy.
n := s2x - cx
m := s2y - cy
e := s2x - s1x
d := s2y - s1y
// lineFunc checks if the t parameter is in the segment and if so
// calculates the line point in the unshifted coordinates (adds back
// cx and cy.
lineFunc := func(t float64) (x, y float64, inBounds bool) {
inBounds = t >= 0 && t <= 1 // Check bounds on closed segment
// To check bounds for an open segment use t > 0 && t < 1
if inBounds { // Calc coords for point in segment
x = n - e*t + cx
y = m - d*t + cy
}
return
}
// Since we want the points on the line distance r from the origin,
// (n-et)(n-et) + (m-dt)(m-dt) = rr.
// Expanding and collecting terms yeilds the following quadratic equation:
A, B, C := e*e+d*d, -2*(e*n+m*d), n*n+m*m-r*r
D := B*B - 4*A*C // discriminant of quadratic
if D < 0 {
return // No solution
}
D = math.Sqrt(D)
var p1In, p2In bool
x1, y1, p1In = lineFunc((-B + D) / (2 * A)) // First root
if D == 0.0 {
intersects = p1In
x2, y2 = x1, y1
return // Only possible solution, quadratic has one root.
}
x2, y2, p2In = lineFunc((-B - D) / (2 * A)) // Second root
intersects = p1In || p2In
if p1In == false { // Only x2, y2 may be valid solutions
x1, y1 = x2, y2
} else if p2In == false { // Only x1, y1 are valid solutions
x2, y2 = x1, y1
}
return
}
我用这个函数进行了测试,确认解点在线段内和圆上。它创建了一个测试段,并围绕给定的圆进行扫描:
package geom_test
import (
"testing"
. "**put your package path here**"
)
func CheckEpsilon(t *testing.T, v, epsilon float64, message string) {
if v > epsilon || v < -epsilon {
t.Error(message, v, epsilon)
t.FailNow()
}
}
func TestSegmentCircleIntersection(t *testing.T) {
epsilon := 1e-10 // Something smallish
x1, y1 := 5.0, 2.0 // segment end point 1
x2, y2 := 50.0, 30.0 // segment end point 2
cx, cy := 100.0, 90.0 // center of circle
r := 80.0
segx, segy := x2-x1, y2-y1
testCntr, solutionCntr := 0, 0
for i := -100; i < 100; i++ {
for j := -100; j < 100; j++ {
testCntr++
s1x, s2x := x1+float64(i), x2+float64(i)
s1y, s2y := y1+float64(j), y2+float64(j)
sc1x, sc1y := s1x-cx, s1y-cy
seg1Inside := sc1x*sc1x+sc1y*sc1y < r*r
sc2x, sc2y := s2x-cx, s2y-cy
seg2Inside := sc2x*sc2x+sc2y*sc2y < r*r
p1x, p1y, p2x, p2y, intersects := SegmentCircleIntersection(s1x, s1y, s2x, s2y, cx, cy, r)
if intersects {
solutionCntr++
//Check if points are on circle
c1x, c1y := p1x-cx, p1y-cy
deltaLen1 := (c1x*c1x + c1y*c1y) - r*r
CheckEpsilon(t, deltaLen1, epsilon, "p1 not on circle")
c2x, c2y := p2x-cx, p2y-cy
deltaLen2 := (c2x*c2x + c2y*c2y) - r*r
CheckEpsilon(t, deltaLen2, epsilon, "p2 not on circle")
// Check if points are on the line through the line segment
// "cross product" of vector from a segment point to the point
// and the vector for the segment should be near zero
vp1x, vp1y := p1x-s1x, p1y-s1y
crossProd1 := vp1x*segy - vp1y*segx
CheckEpsilon(t, crossProd1, epsilon, "p1 not on line ")
vp2x, vp2y := p2x-s1x, p2y-s1y
crossProd2 := vp2x*segy - vp2y*segx
CheckEpsilon(t, crossProd2, epsilon, "p2 not on line ")
// Check if point is between points s1 and s2 on line
// This means the sign of the dot prod of the segment vector
// and point to segment end point vectors are opposite for
// either end.
wp1x, wp1y := p1x-s2x, p1y-s2y
dp1v := vp1x*segx + vp1y*segy
dp1w := wp1x*segx + wp1y*segy
if (dp1v < 0 && dp1w < 0) || (dp1v > 0 && dp1w > 0) {
t.Error("point not contained in segment ", dp1v, dp1w)
t.FailNow()
}
wp2x, wp2y := p2x-s2x, p2y-s2y
dp2v := vp2x*segx + vp2y*segy
dp2w := wp2x*segx + wp2y*segy
if (dp2v < 0 && dp2w < 0) || (dp2v > 0 && dp2w > 0) {
t.Error("point not contained in segment ", dp2v, dp2w)
t.FailNow()
}
if s1x == s2x && s2y == s1y { //Only one solution
// Test that one end of the segment is withing the radius of the circle
// and one is not
if seg1Inside && seg2Inside {
t.Error("Only one solution but both line segment ends inside")
t.FailNow()
}
if !seg1Inside && !seg2Inside {
t.Error("Only one solution but both line segment ends outside")
t.FailNow()
}
}
} else { // No intersection, check if both points outside or inside
if (seg1Inside && !seg2Inside) || (!seg1Inside && seg2Inside) {
t.Error("No solution but only one point in radius of circle")
t.FailNow()
}
}
}
}
t.Log("Tested ", testCntr, " examples and found ", solutionCntr, " solutions.")
}
下面是测试的输出:
=== RUN TestSegmentCircleIntersection
--- PASS: TestSegmentCircleIntersection (0.00s)
geom_test.go:105: Tested 40000 examples and found 7343 solutions.
最后,该方法很容易扩展到射线从一点开始,经过另一点并延伸到无穷远的情况,只需测试t > 0或t < 1,而不是两者都测试。