我有一条从a到B的直线和一个半径为R的圆。
用什么算法来检查直线是否与圆相交?它在圆边的哪个坐标上?
我有一条从a到B的直线和一个半径为R的圆。
用什么算法来检查直线是否与圆相交?它在圆边的哪个坐标上?
当前回答
虽然我认为使用线圆交点,然后检查交点是否在端点之间更好,可能更便宜,但我想添加这个更直观的解决方案。
我喜欢把这个问题想象成“香肠上的点问题”,在不改变算法的情况下,它可以在任何维度上工作。 这个解找不到交点。
以下是我想到的:
(我使用“小于”,但“小于或等于”也可以使用,这取决于我们测试的内容。)
确保Circle_Point小于到无限线的半径距离。(这里使用最喜欢的方法)。 计算从两个Segment_Points到Circle_Point的距离。 测试较大的Circle_Point-Segment_Point距离是否小于根号(Segment_Length^2+Radius^2)。 (这是从一个分段点到一个理论点的距离,也就是从另一个分段点到无限线(直角)的半径距离。见图片)。
3 t。如果为true: Circle_Point在sausage内部。 3 f。如果为false:如果较小的Circle_Point- segment_point距离小于Radius,则Circle_Point在sausage内部。
图片:最粗的线段是选定的线段,没有示例圆。有点粗糙,有些像素有点不对。
function boolean pointInSausage(sp1,sp2,r,c) {
if ( !(pointLineDist(c,sp1,sp2) < r) ) {
return false;
}
double a = dist(sp1,c);
double b = dist(sp2,c);
double l;
double s;
if (a>b) {
l = a;
s = b;
} else {
l = b;
s = a;
}
double segLength = dist(sp1,sp2);
if ( l < sqrt(segLength*segLength+r*r) ) {
return true;
}
return s < r;
}
如果发现任何问题,告诉我,我会编辑或撤回。
其他回答
基于@Joe Skeen的python解决方案
def check_line_segment_circle_intersection(line, point, radious):
""" Checks whether a point intersects with a line defined by two points.
A `point` is list with two values: [2, 3]
A `line` is list with two points: [point1, point2]
"""
line_distance = distance(line[0], line[1])
distance_start_to_point = distance(line[0], point)
distance_end_to_point = distance(line[1], point)
if (distance_start_to_point <= radious or distance_end_to_point <= radious):
return True
# angle between line and point with law of cosines
numerator = (math.pow(distance_start_to_point, 2)
+ math.pow(line_distance, 2)
- math.pow(distance_end_to_point, 2))
denominator = 2 * distance_start_to_point * line_distance
ratio = numerator / denominator
ratio = ratio if ratio <= 1 else 1 # To account for float errors
ratio = ratio if ratio >= -1 else -1 # To account for float errors
angle = math.acos(ratio)
# distance from the point to the line with sin projection
distance_line_to_point = math.sin(angle) * distance_start_to_point
if distance_line_to_point <= radious:
point_projection_in_line = math.cos(angle) * distance_start_to_point
# Intersection occurs whent the point projection in the line is less
# than the line distance and positive
return point_projection_in_line <= line_distance and point_projection_in_line >= 0
return False
def distance(point1, point2):
return math.sqrt(
math.pow(point1[1] - point2[1], 2) +
math.pow(point1[0] - point2[0], 2)
)
这里你需要一些数学知识:
假设A = (Xa, Ya), B = (Xb, Yb), C = (Xc, Yc)。从A到B的直线上的任意一点都有坐标(*Xa + (1-)Xb, * ya + (1-)*Yb) = P
如果点P的距离是R到C,它一定在圆上。你想要的是解决
distance(P, C) = R
这是
(alpha*Xa + (1-alpha)*Xb)^2 + (alpha*Ya + (1-alpha)*Yb)^2 = R^2
alpha^2*Xa^2 + alpha^2*Xb^2 - 2*alpha*Xb^2 + Xb^2 + alpha^2*Ya^2 + alpha^2*Yb^2 - 2*alpha*Yb^2 + Yb^2=R^2
(Xa^2 + Xb^2 + Ya^2 + Yb^2)*alpha^2 - 2*(Xb^2 + Yb^2)*alpha + (Xb^2 + Yb^2 - R^2) = 0
如果你将abc公式应用到这个方程来求解,并使用alpha的解来计算P的坐标,你会得到交点,如果存在的话。
我会用这个算法来计算点(圆心)和线(线AB)之间的距离。这可以用来确定直线与圆的交点。
假设有点A B c, Ax和Ay是A点的x和y分量。B和c也是一样,标量R是圆半径。
该算法要求A B C是不同的点,且R不为0。
这是算法
// compute the euclidean distance between A and B
LAB = sqrt( (Bx-Ax)²+(By-Ay)² )
// compute the direction vector D from A to B
Dx = (Bx-Ax)/LAB
Dy = (By-Ay)/LAB
// the equation of the line AB is x = Dx*t + Ax, y = Dy*t + Ay with 0 <= t <= LAB.
// compute the distance between the points A and E, where
// E is the point of AB closest the circle center (Cx, Cy)
t = Dx*(Cx-Ax) + Dy*(Cy-Ay)
// compute the coordinates of the point E
Ex = t*Dx+Ax
Ey = t*Dy+Ay
// compute the euclidean distance between E and C
LEC = sqrt((Ex-Cx)²+(Ey-Cy)²)
// test if the line intersects the circle
if( LEC < R )
{
// compute distance from t to circle intersection point
dt = sqrt( R² - LEC²)
// compute first intersection point
Fx = (t-dt)*Dx + Ax
Fy = (t-dt)*Dy + Ay
// compute second intersection point
Gx = (t+dt)*Dx + Ax
Gy = (t+dt)*Dy + Ay
}
// else test if the line is tangent to circle
else if( LEC == R )
// tangent point to circle is E
else
// line doesn't touch circle
下面是JavaScript的一个很好的解决方案(包括所有必需的数学和实时插图) https://bl.ocks.org/milkbread/11000965
尽管该解决方案中的is_on函数需要修改:
函数is_on(a, b, c) { return Math.abs(距离(a,c) +距离(c,b) -距离(a,b))<0.000001; }
' VB.NET - Code
Function CheckLineSegmentCircleIntersection(x1 As Double, y1 As Double, x2 As Double, y2 As Double, xc As Double, yc As Double, r As Double) As Boolean
Static xd As Double = 0.0F
Static yd As Double = 0.0F
Static t As Double = 0.0F
Static d As Double = 0.0F
Static dx_2_1 As Double = 0.0F
Static dy_2_1 As Double = 0.0F
dx_2_1 = x2 - x1
dy_2_1 = y2 - y1
t = ((yc - y1) * dy_2_1 + (xc - x1) * dx_2_1) / (dy_2_1 * dy_2_1 + dx_2_1 * dx_2_1)
If 0 <= t And t <= 1 Then
xd = x1 + t * dx_2_1
yd = y1 + t * dy_2_1
d = Math.Sqrt((xd - xc) * (xd - xc) + (yd - yc) * (yd - yc))
Return d <= r
Else
d = Math.Sqrt((xc - x1) * (xc - x1) + (yc - y1) * (yc - y1))
If d <= r Then
Return True
Else
d = Math.Sqrt((xc - x2) * (xc - x2) + (yc - y2) * (yc - y2))
If d <= r Then
Return True
Else
Return False
End If
End If
End If
End Function