我有一条从a到B的直线和一个半径为R的圆。
用什么算法来检查直线是否与圆相交?它在圆边的哪个坐标上?
我有一条从a到B的直线和一个半径为R的圆。
用什么算法来检查直线是否与圆相交?它在圆边的哪个坐标上?
当前回答
这里是一个用golang写的解决方案。这个方法和这里发布的其他一些答案类似,但不完全相同。它易于实现,并已经过测试。以下是步骤:
Translate coordinates so that the circle is at the origin. Express the line segment as parametrized functions of t for both the x and y coordinates. If t is 0, the function's values are one end point of the segment, and if t is 1, the function's values are the other end point. Solve, if possible, the quadratic equation resulting from constraining values of t that produce x, y coordinates with distances from the origin equal to the circle's radius. Throw out solutions where t is < 0 or > 1 ( <= 0 or >= 1 for an open segment). Those points are not contained in the segment. Translate back to original coordinates.
这里导出了二次曲线的A、B和C的值,其中(n-et)和(m-dt)分别是直线x坐标和y坐标的方程。R是圆的半径。
(n-et)(n-et) + (m-dt)(m-dt) = rr
nn - 2etn + etet + mm - 2mdt + dtdt = rr
(ee+dd)tt - 2(en + dm)t + nn + mm - rr = 0
因此A = ee+dd, B = - 2(en + dm), C = nn + mm - rr。
下面是函数的golang代码:
package geom
import (
"math"
)
// SegmentCircleIntersection return points of intersection between a circle and
// a line segment. The Boolean intersects returns true if one or
// more solutions exist. If only one solution exists,
// x1 == x2 and y1 == y2.
// s1x and s1y are coordinates for one end point of the segment, and
// s2x and s2y are coordinates for the other end of the segment.
// cx and cy are the coordinates of the center of the circle and
// r is the radius of the circle.
func SegmentCircleIntersection(s1x, s1y, s2x, s2y, cx, cy, r float64) (x1, y1, x2, y2 float64, intersects bool) {
// (n-et) and (m-dt) are expressions for the x and y coordinates
// of a parameterized line in coordinates whose origin is the
// center of the circle.
// When t = 0, (n-et) == s1x - cx and (m-dt) == s1y - cy
// When t = 1, (n-et) == s2x - cx and (m-dt) == s2y - cy.
n := s2x - cx
m := s2y - cy
e := s2x - s1x
d := s2y - s1y
// lineFunc checks if the t parameter is in the segment and if so
// calculates the line point in the unshifted coordinates (adds back
// cx and cy.
lineFunc := func(t float64) (x, y float64, inBounds bool) {
inBounds = t >= 0 && t <= 1 // Check bounds on closed segment
// To check bounds for an open segment use t > 0 && t < 1
if inBounds { // Calc coords for point in segment
x = n - e*t + cx
y = m - d*t + cy
}
return
}
// Since we want the points on the line distance r from the origin,
// (n-et)(n-et) + (m-dt)(m-dt) = rr.
// Expanding and collecting terms yeilds the following quadratic equation:
A, B, C := e*e+d*d, -2*(e*n+m*d), n*n+m*m-r*r
D := B*B - 4*A*C // discriminant of quadratic
if D < 0 {
return // No solution
}
D = math.Sqrt(D)
var p1In, p2In bool
x1, y1, p1In = lineFunc((-B + D) / (2 * A)) // First root
if D == 0.0 {
intersects = p1In
x2, y2 = x1, y1
return // Only possible solution, quadratic has one root.
}
x2, y2, p2In = lineFunc((-B - D) / (2 * A)) // Second root
intersects = p1In || p2In
if p1In == false { // Only x2, y2 may be valid solutions
x1, y1 = x2, y2
} else if p2In == false { // Only x1, y1 are valid solutions
x2, y2 = x1, y1
}
return
}
我用这个函数进行了测试,确认解点在线段内和圆上。它创建了一个测试段,并围绕给定的圆进行扫描:
package geom_test
import (
"testing"
. "**put your package path here**"
)
func CheckEpsilon(t *testing.T, v, epsilon float64, message string) {
if v > epsilon || v < -epsilon {
t.Error(message, v, epsilon)
t.FailNow()
}
}
func TestSegmentCircleIntersection(t *testing.T) {
epsilon := 1e-10 // Something smallish
x1, y1 := 5.0, 2.0 // segment end point 1
x2, y2 := 50.0, 30.0 // segment end point 2
cx, cy := 100.0, 90.0 // center of circle
r := 80.0
segx, segy := x2-x1, y2-y1
testCntr, solutionCntr := 0, 0
for i := -100; i < 100; i++ {
for j := -100; j < 100; j++ {
testCntr++
s1x, s2x := x1+float64(i), x2+float64(i)
s1y, s2y := y1+float64(j), y2+float64(j)
sc1x, sc1y := s1x-cx, s1y-cy
seg1Inside := sc1x*sc1x+sc1y*sc1y < r*r
sc2x, sc2y := s2x-cx, s2y-cy
seg2Inside := sc2x*sc2x+sc2y*sc2y < r*r
p1x, p1y, p2x, p2y, intersects := SegmentCircleIntersection(s1x, s1y, s2x, s2y, cx, cy, r)
if intersects {
solutionCntr++
//Check if points are on circle
c1x, c1y := p1x-cx, p1y-cy
deltaLen1 := (c1x*c1x + c1y*c1y) - r*r
CheckEpsilon(t, deltaLen1, epsilon, "p1 not on circle")
c2x, c2y := p2x-cx, p2y-cy
deltaLen2 := (c2x*c2x + c2y*c2y) - r*r
CheckEpsilon(t, deltaLen2, epsilon, "p2 not on circle")
// Check if points are on the line through the line segment
// "cross product" of vector from a segment point to the point
// and the vector for the segment should be near zero
vp1x, vp1y := p1x-s1x, p1y-s1y
crossProd1 := vp1x*segy - vp1y*segx
CheckEpsilon(t, crossProd1, epsilon, "p1 not on line ")
vp2x, vp2y := p2x-s1x, p2y-s1y
crossProd2 := vp2x*segy - vp2y*segx
CheckEpsilon(t, crossProd2, epsilon, "p2 not on line ")
// Check if point is between points s1 and s2 on line
// This means the sign of the dot prod of the segment vector
// and point to segment end point vectors are opposite for
// either end.
wp1x, wp1y := p1x-s2x, p1y-s2y
dp1v := vp1x*segx + vp1y*segy
dp1w := wp1x*segx + wp1y*segy
if (dp1v < 0 && dp1w < 0) || (dp1v > 0 && dp1w > 0) {
t.Error("point not contained in segment ", dp1v, dp1w)
t.FailNow()
}
wp2x, wp2y := p2x-s2x, p2y-s2y
dp2v := vp2x*segx + vp2y*segy
dp2w := wp2x*segx + wp2y*segy
if (dp2v < 0 && dp2w < 0) || (dp2v > 0 && dp2w > 0) {
t.Error("point not contained in segment ", dp2v, dp2w)
t.FailNow()
}
if s1x == s2x && s2y == s1y { //Only one solution
// Test that one end of the segment is withing the radius of the circle
// and one is not
if seg1Inside && seg2Inside {
t.Error("Only one solution but both line segment ends inside")
t.FailNow()
}
if !seg1Inside && !seg2Inside {
t.Error("Only one solution but both line segment ends outside")
t.FailNow()
}
}
} else { // No intersection, check if both points outside or inside
if (seg1Inside && !seg2Inside) || (!seg1Inside && seg2Inside) {
t.Error("No solution but only one point in radius of circle")
t.FailNow()
}
}
}
}
t.Log("Tested ", testCntr, " examples and found ", solutionCntr, " solutions.")
}
下面是测试的输出:
=== RUN TestSegmentCircleIntersection
--- PASS: TestSegmentCircleIntersection (0.00s)
geom_test.go:105: Tested 40000 examples and found 7343 solutions.
最后,该方法很容易扩展到射线从一点开始,经过另一点并延伸到无穷远的情况,只需测试t > 0或t < 1,而不是两者都测试。
其他回答
似乎没人考虑投影,我是不是完全跑题了?
将向量AC投影到AB上,投影的向量AD就得到了新的点D。 如果D和C之间的距离小于(或等于)R,我们有一个交点。
是这样的:
社区编辑:
对于稍后无意中看到这篇文章并想知道如何实现这样一个算法的人来说,这里是一个使用常见向量操作函数用JavaScript编写的通用实现。
/**
* Returns the distance from line segment AB to point C
*/
function distanceSegmentToPoint(A, B, C) {
// Compute vectors AC and AB
const AC = sub(C, A);
const AB = sub(B, A);
// Get point D by taking the projection of AC onto AB then adding the offset of A
const D = add(proj(AC, AB), A);
const AD = sub(D, A);
// D might not be on AB so calculate k of D down AB (aka solve AD = k * AB)
// We can use either component, but choose larger value to reduce the chance of dividing by zero
const k = Math.abs(AB.x) > Math.abs(AB.y) ? AD.x / AB.x : AD.y / AB.y;
// Check if D is off either end of the line segment
if (k <= 0.0) {
return Math.sqrt(hypot2(C, A));
} else if (k >= 1.0) {
return Math.sqrt(hypot2(C, B));
}
return Math.sqrt(hypot2(C, D));
}
对于这个实现,我使用了两个常见的矢量操作函数,无论您在什么环境中工作,都可能已经提供了这些函数。但是,如果您还没有这些可用的功能,下面介绍如何实现它们。
// Define some common functions for working with vectors
const add = (a, b) => ({x: a.x + b.x, y: a.y + b.y});
const sub = (a, b) => ({x: a.x - b.x, y: a.y - b.y});
const dot = (a, b) => a.x * b.x + a.y * b.y;
const hypot2 = (a, b) => dot(sub(a, b), sub(a, b));
// Function for projecting some vector a onto b
function proj(a, b) {
const k = dot(a, b) / dot(b, b);
return {x: k * b.x, y: k * b.y};
}
这里是一个用golang写的解决方案。这个方法和这里发布的其他一些答案类似,但不完全相同。它易于实现,并已经过测试。以下是步骤:
Translate coordinates so that the circle is at the origin. Express the line segment as parametrized functions of t for both the x and y coordinates. If t is 0, the function's values are one end point of the segment, and if t is 1, the function's values are the other end point. Solve, if possible, the quadratic equation resulting from constraining values of t that produce x, y coordinates with distances from the origin equal to the circle's radius. Throw out solutions where t is < 0 or > 1 ( <= 0 or >= 1 for an open segment). Those points are not contained in the segment. Translate back to original coordinates.
这里导出了二次曲线的A、B和C的值,其中(n-et)和(m-dt)分别是直线x坐标和y坐标的方程。R是圆的半径。
(n-et)(n-et) + (m-dt)(m-dt) = rr
nn - 2etn + etet + mm - 2mdt + dtdt = rr
(ee+dd)tt - 2(en + dm)t + nn + mm - rr = 0
因此A = ee+dd, B = - 2(en + dm), C = nn + mm - rr。
下面是函数的golang代码:
package geom
import (
"math"
)
// SegmentCircleIntersection return points of intersection between a circle and
// a line segment. The Boolean intersects returns true if one or
// more solutions exist. If only one solution exists,
// x1 == x2 and y1 == y2.
// s1x and s1y are coordinates for one end point of the segment, and
// s2x and s2y are coordinates for the other end of the segment.
// cx and cy are the coordinates of the center of the circle and
// r is the radius of the circle.
func SegmentCircleIntersection(s1x, s1y, s2x, s2y, cx, cy, r float64) (x1, y1, x2, y2 float64, intersects bool) {
// (n-et) and (m-dt) are expressions for the x and y coordinates
// of a parameterized line in coordinates whose origin is the
// center of the circle.
// When t = 0, (n-et) == s1x - cx and (m-dt) == s1y - cy
// When t = 1, (n-et) == s2x - cx and (m-dt) == s2y - cy.
n := s2x - cx
m := s2y - cy
e := s2x - s1x
d := s2y - s1y
// lineFunc checks if the t parameter is in the segment and if so
// calculates the line point in the unshifted coordinates (adds back
// cx and cy.
lineFunc := func(t float64) (x, y float64, inBounds bool) {
inBounds = t >= 0 && t <= 1 // Check bounds on closed segment
// To check bounds for an open segment use t > 0 && t < 1
if inBounds { // Calc coords for point in segment
x = n - e*t + cx
y = m - d*t + cy
}
return
}
// Since we want the points on the line distance r from the origin,
// (n-et)(n-et) + (m-dt)(m-dt) = rr.
// Expanding and collecting terms yeilds the following quadratic equation:
A, B, C := e*e+d*d, -2*(e*n+m*d), n*n+m*m-r*r
D := B*B - 4*A*C // discriminant of quadratic
if D < 0 {
return // No solution
}
D = math.Sqrt(D)
var p1In, p2In bool
x1, y1, p1In = lineFunc((-B + D) / (2 * A)) // First root
if D == 0.0 {
intersects = p1In
x2, y2 = x1, y1
return // Only possible solution, quadratic has one root.
}
x2, y2, p2In = lineFunc((-B - D) / (2 * A)) // Second root
intersects = p1In || p2In
if p1In == false { // Only x2, y2 may be valid solutions
x1, y1 = x2, y2
} else if p2In == false { // Only x1, y1 are valid solutions
x2, y2 = x1, y1
}
return
}
我用这个函数进行了测试,确认解点在线段内和圆上。它创建了一个测试段,并围绕给定的圆进行扫描:
package geom_test
import (
"testing"
. "**put your package path here**"
)
func CheckEpsilon(t *testing.T, v, epsilon float64, message string) {
if v > epsilon || v < -epsilon {
t.Error(message, v, epsilon)
t.FailNow()
}
}
func TestSegmentCircleIntersection(t *testing.T) {
epsilon := 1e-10 // Something smallish
x1, y1 := 5.0, 2.0 // segment end point 1
x2, y2 := 50.0, 30.0 // segment end point 2
cx, cy := 100.0, 90.0 // center of circle
r := 80.0
segx, segy := x2-x1, y2-y1
testCntr, solutionCntr := 0, 0
for i := -100; i < 100; i++ {
for j := -100; j < 100; j++ {
testCntr++
s1x, s2x := x1+float64(i), x2+float64(i)
s1y, s2y := y1+float64(j), y2+float64(j)
sc1x, sc1y := s1x-cx, s1y-cy
seg1Inside := sc1x*sc1x+sc1y*sc1y < r*r
sc2x, sc2y := s2x-cx, s2y-cy
seg2Inside := sc2x*sc2x+sc2y*sc2y < r*r
p1x, p1y, p2x, p2y, intersects := SegmentCircleIntersection(s1x, s1y, s2x, s2y, cx, cy, r)
if intersects {
solutionCntr++
//Check if points are on circle
c1x, c1y := p1x-cx, p1y-cy
deltaLen1 := (c1x*c1x + c1y*c1y) - r*r
CheckEpsilon(t, deltaLen1, epsilon, "p1 not on circle")
c2x, c2y := p2x-cx, p2y-cy
deltaLen2 := (c2x*c2x + c2y*c2y) - r*r
CheckEpsilon(t, deltaLen2, epsilon, "p2 not on circle")
// Check if points are on the line through the line segment
// "cross product" of vector from a segment point to the point
// and the vector for the segment should be near zero
vp1x, vp1y := p1x-s1x, p1y-s1y
crossProd1 := vp1x*segy - vp1y*segx
CheckEpsilon(t, crossProd1, epsilon, "p1 not on line ")
vp2x, vp2y := p2x-s1x, p2y-s1y
crossProd2 := vp2x*segy - vp2y*segx
CheckEpsilon(t, crossProd2, epsilon, "p2 not on line ")
// Check if point is between points s1 and s2 on line
// This means the sign of the dot prod of the segment vector
// and point to segment end point vectors are opposite for
// either end.
wp1x, wp1y := p1x-s2x, p1y-s2y
dp1v := vp1x*segx + vp1y*segy
dp1w := wp1x*segx + wp1y*segy
if (dp1v < 0 && dp1w < 0) || (dp1v > 0 && dp1w > 0) {
t.Error("point not contained in segment ", dp1v, dp1w)
t.FailNow()
}
wp2x, wp2y := p2x-s2x, p2y-s2y
dp2v := vp2x*segx + vp2y*segy
dp2w := wp2x*segx + wp2y*segy
if (dp2v < 0 && dp2w < 0) || (dp2v > 0 && dp2w > 0) {
t.Error("point not contained in segment ", dp2v, dp2w)
t.FailNow()
}
if s1x == s2x && s2y == s1y { //Only one solution
// Test that one end of the segment is withing the radius of the circle
// and one is not
if seg1Inside && seg2Inside {
t.Error("Only one solution but both line segment ends inside")
t.FailNow()
}
if !seg1Inside && !seg2Inside {
t.Error("Only one solution but both line segment ends outside")
t.FailNow()
}
}
} else { // No intersection, check if both points outside or inside
if (seg1Inside && !seg2Inside) || (!seg1Inside && seg2Inside) {
t.Error("No solution but only one point in radius of circle")
t.FailNow()
}
}
}
}
t.Log("Tested ", testCntr, " examples and found ", solutionCntr, " solutions.")
}
下面是测试的输出:
=== RUN TestSegmentCircleIntersection
--- PASS: TestSegmentCircleIntersection (0.00s)
geom_test.go:105: Tested 40000 examples and found 7343 solutions.
最后,该方法很容易扩展到射线从一点开始,经过另一点并延伸到无穷远的情况,只需测试t > 0或t < 1,而不是两者都测试。
奇怪的是,我可以回答,但不能评论…… 我喜欢Multitaskpro的方法,它可以移动所有东西,使圆的中心落在原点上。不幸的是,他的代码中有两个问题。首先在平方根下的部分,你需要去掉双倍的幂。所以不是:
is underRadical = Math.pow((Math.pow(r,2)*(Math.pow(m,2)+1)),2)-Math.pow(b,2));
but:
under Radical = Math.pow(r,2)*(Math.pow(m,2)+1)) - Math.pow(b,2);
在最后的坐标中,他忘记把解移回来。所以不是:
var i1 = {x:t1,y:m*t1+b}
but:
Var i1 = {x:t1+c。x, y: m * t1 + b +陈守惠};
整个函数就变成:
function interceptOnCircle(p1, p2, c, r) {
//p1 is the first line point
//p2 is the second line point
//c is the circle's center
//r is the circle's radius
var p3 = {x:p1.x - c.x, y:p1.y - c.y}; //shifted line points
var p4 = {x:p2.x - c.x, y:p2.y - c.y};
var m = (p4.y - p3.y) / (p4.x - p3.x); //slope of the line
var b = p3.y - m * p3.x; //y-intercept of line
var underRadical = Math.pow(r,2)*Math.pow(m,2) + Math.pow(r,2) - Math.pow(b,2); //the value under the square root sign
if (underRadical < 0) {
//line completely missed
return false;
} else {
var t1 = (-m*b + Math.sqrt(underRadical))/(Math.pow(m,2) + 1); //one of the intercept x's
var t2 = (-m*b - Math.sqrt(underRadical))/(Math.pow(m,2) + 1); //other intercept's x
var i1 = {x:t1+c.x, y:m*t1+b+c.y}; //intercept point 1
var i2 = {x:t2+c.x, y:m*t2+b+c.y}; //intercept point 2
return [i1, i2];
}
}
我会用这个算法来计算点(圆心)和线(线AB)之间的距离。这可以用来确定直线与圆的交点。
假设有点A B c, Ax和Ay是A点的x和y分量。B和c也是一样,标量R是圆半径。
该算法要求A B C是不同的点,且R不为0。
这是算法
// compute the euclidean distance between A and B
LAB = sqrt( (Bx-Ax)²+(By-Ay)² )
// compute the direction vector D from A to B
Dx = (Bx-Ax)/LAB
Dy = (By-Ay)/LAB
// the equation of the line AB is x = Dx*t + Ax, y = Dy*t + Ay with 0 <= t <= LAB.
// compute the distance between the points A and E, where
// E is the point of AB closest the circle center (Cx, Cy)
t = Dx*(Cx-Ax) + Dy*(Cy-Ay)
// compute the coordinates of the point E
Ex = t*Dx+Ax
Ey = t*Dy+Ay
// compute the euclidean distance between E and C
LEC = sqrt((Ex-Cx)²+(Ey-Cy)²)
// test if the line intersects the circle
if( LEC < R )
{
// compute distance from t to circle intersection point
dt = sqrt( R² - LEC²)
// compute first intersection point
Fx = (t-dt)*Dx + Ax
Fy = (t-dt)*Dy + Ay
// compute second intersection point
Gx = (t+dt)*Dx + Ax
Gy = (t+dt)*Dy + Ay
}
// else test if the line is tangent to circle
else if( LEC == R )
// tangent point to circle is E
else
// line doesn't touch circle
好吧,我不会给你代码,但既然你已经标记了这个算法,我认为这对你来说无关紧要。 首先,你要得到一个垂直于这条直线的向量。
y = ax + c是一个未知变量c是未知变量 为了解决这个问题,计算直线经过圆心时的值。
也就是说, 将圆心的位置代入直线方程,解出c。 然后计算原直线与其法线的交点。
这样就能得到直线上离圆最近的点。 计算该点到圆中心之间的距离(使用矢量的大小)。 如果这个小于圆的半径,看,我们有一个交点!