我有一条从a到B的直线和一个半径为R的圆。

用什么算法来检查直线是否与圆相交?它在圆边的哪个坐标上?


当前回答

这里是一个用golang写的解决方案。这个方法和这里发布的其他一些答案类似,但不完全相同。它易于实现,并已经过测试。以下是步骤:

Translate coordinates so that the circle is at the origin. Express the line segment as parametrized functions of t for both the x and y coordinates. If t is 0, the function's values are one end point of the segment, and if t is 1, the function's values are the other end point. Solve, if possible, the quadratic equation resulting from constraining values of t that produce x, y coordinates with distances from the origin equal to the circle's radius. Throw out solutions where t is < 0 or > 1 ( <= 0 or >= 1 for an open segment). Those points are not contained in the segment. Translate back to original coordinates.

这里导出了二次曲线的A、B和C的值,其中(n-et)和(m-dt)分别是直线x坐标和y坐标的方程。R是圆的半径。

(n-et)(n-et) + (m-dt)(m-dt) = rr
nn - 2etn + etet + mm - 2mdt + dtdt = rr
(ee+dd)tt - 2(en + dm)t + nn + mm - rr = 0

因此A = ee+dd, B = - 2(en + dm), C = nn + mm - rr。

下面是函数的golang代码:

package geom

import (
    "math"
)

// SegmentCircleIntersection return points of intersection between a circle and
// a line segment. The Boolean intersects returns true if one or
// more solutions exist. If only one solution exists, 
// x1 == x2 and y1 == y2.
// s1x and s1y are coordinates for one end point of the segment, and
// s2x and s2y are coordinates for the other end of the segment.
// cx and cy are the coordinates of the center of the circle and
// r is the radius of the circle.
func SegmentCircleIntersection(s1x, s1y, s2x, s2y, cx, cy, r float64) (x1, y1, x2, y2 float64, intersects bool) {
    // (n-et) and (m-dt) are expressions for the x and y coordinates
    // of a parameterized line in coordinates whose origin is the
    // center of the circle.
    // When t = 0, (n-et) == s1x - cx and (m-dt) == s1y - cy
    // When t = 1, (n-et) == s2x - cx and (m-dt) == s2y - cy.
    n := s2x - cx
    m := s2y - cy

    e := s2x - s1x
    d := s2y - s1y

    // lineFunc checks if the  t parameter is in the segment and if so
    // calculates the line point in the unshifted coordinates (adds back
    // cx and cy.
    lineFunc := func(t float64) (x, y float64, inBounds bool) {
        inBounds = t >= 0 && t <= 1 // Check bounds on closed segment
        // To check bounds for an open segment use t > 0 && t < 1
        if inBounds { // Calc coords for point in segment
            x = n - e*t + cx
            y = m - d*t + cy
        }
        return
    }

    // Since we want the points on the line distance r from the origin,
    // (n-et)(n-et) + (m-dt)(m-dt) = rr.
    // Expanding and collecting terms yeilds the following quadratic equation:
    A, B, C := e*e+d*d, -2*(e*n+m*d), n*n+m*m-r*r

    D := B*B - 4*A*C // discriminant of quadratic
    if D < 0 {
        return // No solution
    }
    D = math.Sqrt(D)

    var p1In, p2In bool
    x1, y1, p1In = lineFunc((-B + D) / (2 * A)) // First root
    if D == 0.0 {
        intersects = p1In
        x2, y2 = x1, y1
        return // Only possible solution, quadratic has one root.
    }

    x2, y2, p2In = lineFunc((-B - D) / (2 * A)) // Second root

    intersects = p1In || p2In
    if p1In == false { // Only x2, y2 may be valid solutions
        x1, y1 = x2, y2
    } else if p2In == false { // Only x1, y1 are valid solutions
        x2, y2 = x1, y1
    }
    return
}

我用这个函数进行了测试,确认解点在线段内和圆上。它创建了一个测试段,并围绕给定的圆进行扫描:

package geom_test

import (
    "testing"

    . "**put your package path here**"
)

func CheckEpsilon(t *testing.T, v, epsilon float64, message string) {
    if v > epsilon || v < -epsilon {
        t.Error(message, v, epsilon)
        t.FailNow()
    }
}

func TestSegmentCircleIntersection(t *testing.T) {
    epsilon := 1e-10      // Something smallish
    x1, y1 := 5.0, 2.0    // segment end point 1
    x2, y2 := 50.0, 30.0  // segment end point 2
    cx, cy := 100.0, 90.0 // center of circle
    r := 80.0

    segx, segy := x2-x1, y2-y1

    testCntr, solutionCntr := 0, 0

    for i := -100; i < 100; i++ {
        for j := -100; j < 100; j++ {
            testCntr++
            s1x, s2x := x1+float64(i), x2+float64(i)
            s1y, s2y := y1+float64(j), y2+float64(j)

            sc1x, sc1y := s1x-cx, s1y-cy
            seg1Inside := sc1x*sc1x+sc1y*sc1y < r*r
            sc2x, sc2y := s2x-cx, s2y-cy
            seg2Inside := sc2x*sc2x+sc2y*sc2y < r*r

            p1x, p1y, p2x, p2y, intersects := SegmentCircleIntersection(s1x, s1y, s2x, s2y, cx, cy, r)

            if intersects {
                solutionCntr++
                //Check if points are on circle
                c1x, c1y := p1x-cx, p1y-cy
                deltaLen1 := (c1x*c1x + c1y*c1y) - r*r
                CheckEpsilon(t, deltaLen1, epsilon, "p1 not on circle")

                c2x, c2y := p2x-cx, p2y-cy
                deltaLen2 := (c2x*c2x + c2y*c2y) - r*r
                CheckEpsilon(t, deltaLen2, epsilon, "p2 not on circle")

                // Check if points are on the line through the line segment
                // "cross product" of vector from a segment point to the point
                // and the vector for the segment should be near zero
                vp1x, vp1y := p1x-s1x, p1y-s1y
                crossProd1 := vp1x*segy - vp1y*segx
                CheckEpsilon(t, crossProd1, epsilon, "p1 not on line ")

                vp2x, vp2y := p2x-s1x, p2y-s1y
                crossProd2 := vp2x*segy - vp2y*segx
                CheckEpsilon(t, crossProd2, epsilon, "p2 not on line ")

                // Check if point is between points s1 and s2 on line
                // This means the sign of the dot prod of the segment vector
                // and point to segment end point vectors are opposite for
                // either end.
                wp1x, wp1y := p1x-s2x, p1y-s2y
                dp1v := vp1x*segx + vp1y*segy
                dp1w := wp1x*segx + wp1y*segy
                if (dp1v < 0 && dp1w < 0) || (dp1v > 0 && dp1w > 0) {
                    t.Error("point not contained in segment ", dp1v, dp1w)
                    t.FailNow()
                }

                wp2x, wp2y := p2x-s2x, p2y-s2y
                dp2v := vp2x*segx + vp2y*segy
                dp2w := wp2x*segx + wp2y*segy
                if (dp2v < 0 && dp2w < 0) || (dp2v > 0 && dp2w > 0) {
                    t.Error("point not contained in segment ", dp2v, dp2w)
                    t.FailNow()
                }

                if s1x == s2x && s2y == s1y { //Only one solution
                    // Test that one end of the segment is withing the radius of the circle
                    // and one is not
                    if seg1Inside && seg2Inside {
                        t.Error("Only one solution but both line segment ends inside")
                        t.FailNow()
                    }
                    if !seg1Inside && !seg2Inside {
                        t.Error("Only one solution but both line segment ends outside")
                        t.FailNow()
                    }

                }
            } else { // No intersection, check if both points outside or inside
                if (seg1Inside && !seg2Inside) || (!seg1Inside && seg2Inside) {
                    t.Error("No solution but only one point in radius of circle")
                    t.FailNow()
                }
            }
        }
    }
    t.Log("Tested ", testCntr, " examples and found ", solutionCntr, " solutions.")
}

下面是测试的输出:

=== RUN   TestSegmentCircleIntersection
--- PASS: TestSegmentCircleIntersection (0.00s)
    geom_test.go:105: Tested  40000  examples and found  7343  solutions.

最后,该方法很容易扩展到射线从一点开始,经过另一点并延伸到无穷远的情况,只需测试t > 0或t < 1,而不是两者都测试。

其他回答

这是一个Javascript实现。我的方法是首先将线段转换成一条无限的直线,然后找到交点。从那里,我检查是否找到的点在线段上。代码有良好的文档记录,您应该能够跟随。

您可以在这个现场演示中试用代码。 代码是从我的算法仓库里拿的。

// Small epsilon value
var EPS = 0.0000001;

// point (x, y)
function Point(x, y) {
  this.x = x;
  this.y = y;
}

// Circle with center at (x,y) and radius r
function Circle(x, y, r) {
  this.x = x;
  this.y = y;
  this.r = r;
}

// A line segment (x1, y1), (x2, y2)
function LineSegment(x1, y1, x2, y2) {
  var d = Math.sqrt( (x1-x2)*(x1-x2) + (y1-y2)*(y1-y2) );
  if (d < EPS) throw 'A point is not a line segment';
  this.x1 = x1; this.y1 = y1;
  this.x2 = x2; this.y2 = y2;
}

// An infinite line defined as: ax + by = c
function Line(a, b, c) {
  this.a = a; this.b = b; this.c = c;
  // Normalize line for good measure
  if (Math.abs(b) < EPS) {
    c /= a; a = 1; b = 0;
  } else { 
    a = (Math.abs(a) < EPS) ? 0 : a / b;
    c /= b; b = 1; 
  }
}

// Given a line in standard form: ax + by = c and a circle with 
// a center at (x,y) with radius r this method finds the intersection
// of the line and the circle (if any). 
function circleLineIntersection(circle, line) {

  var a = line.a, b = line.b, c = line.c;
  var x = circle.x, y = circle.y, r = circle.r;

  // Solve for the variable x with the formulas: ax + by = c (equation of line)
  // and (x-X)^2 + (y-Y)^2 = r^2 (equation of circle where X,Y are known) and expand to obtain quadratic:
  // (a^2 + b^2)x^2 + (2abY - 2ac + - 2b^2X)x + (b^2X^2 + b^2Y^2 - 2bcY + c^2 - b^2r^2) = 0
  // Then use quadratic formula X = (-b +- sqrt(a^2 - 4ac))/2a to find the 
  // roots of the equation (if they exist) and this will tell us the intersection points

  // In general a quadratic is written as: Ax^2 + Bx + C = 0
  // (a^2 + b^2)x^2 + (2abY - 2ac + - 2b^2X)x + (b^2X^2 + b^2Y^2 - 2bcY + c^2 - b^2r^2) = 0
  var A = a*a + b*b;
  var B = 2*a*b*y - 2*a*c - 2*b*b*x;
  var C = b*b*x*x + b*b*y*y - 2*b*c*y + c*c - b*b*r*r;

  // Use quadratic formula x = (-b +- sqrt(a^2 - 4ac))/2a to find the 
  // roots of the equation (if they exist).

  var D = B*B - 4*A*C;
  var x1,y1,x2,y2;

  // Handle vertical line case with b = 0
  if (Math.abs(b) < EPS) {

    // Line equation is ax + by = c, but b = 0, so x = c/a
    x1 = c/a;

    // No intersection
    if (Math.abs(x-x1) > r) return [];

    // Vertical line is tangent to circle
    if (Math.abs((x1-r)-x) < EPS || Math.abs((x1+r)-x) < EPS)
      return [new Point(x1, y)];

    var dx = Math.abs(x1 - x);
    var dy = Math.sqrt(r*r-dx*dx);

    // Vertical line cuts through circle
    return [
      new Point(x1,y+dy),
      new Point(x1,y-dy)
    ];

  // Line is tangent to circle
  } else if (Math.abs(D) < EPS) {

    x1 = -B/(2*A);
    y1 = (c - a*x1)/b;

    return [new Point(x1,y1)];

  // No intersection
  } else if (D < 0) {

    return [];

  } else {

    D = Math.sqrt(D);

    x1 = (-B+D)/(2*A);
    y1 = (c - a*x1)/b;

    x2 = (-B-D)/(2*A);
    y2 = (c - a*x2)/b;

    return [
      new Point(x1, y1),
      new Point(x2, y2)
    ];

  }

}

// Converts a line segment to a line in general form
function segmentToGeneralForm(x1,y1,x2,y2) {
  var a = y1 - y2;
  var b = x2 - x1;
  var c = x2*y1 - x1*y2;
  return new Line(a,b,c);
}

// Checks if a point 'pt' is inside the rect defined by (x1,y1), (x2,y2)
function pointInRectangle(pt,x1,y1,x2,y2) {
  var x = Math.min(x1,x2), X = Math.max(x1,x2);
  var y = Math.min(y1,y2), Y = Math.max(y1,y2);
  return x - EPS <= pt.x && pt.x <= X + EPS &&
         y - EPS <= pt.y && pt.y <= Y + EPS;
}

// Finds the intersection(s) of a line segment and a circle
function lineSegmentCircleIntersection(segment, circle) {

  var x1 = segment.x1, y1 = segment.y1, x2 = segment.x2, y2 = segment.y2;
  var line = segmentToGeneralForm(x1,y1,x2,y2);
  var pts = circleLineIntersection(circle, line);

  // No intersection
  if (pts.length === 0) return [];

  var pt1 = pts[0];
  var includePt1 = pointInRectangle(pt1,x1,y1,x2,y2);

  // Check for unique intersection
  if (pts.length === 1) {
    if (includePt1) return [pt1];
    return [];
  }

  var pt2 = pts[1];
  var includePt2 = pointInRectangle(pt2,x1,y1,x2,y2);

  // Check for remaining intersections
  if (includePt1 && includePt2) return [pt1, pt2];
  if (includePt1) return [pt1];
  if (includePt2) return [pt2];
  return [];

}

奇怪的是,我可以回答,但不能评论…… 我喜欢Multitaskpro的方法,它可以移动所有东西,使圆的中心落在原点上。不幸的是,他的代码中有两个问题。首先在平方根下的部分,你需要去掉双倍的幂。所以不是:

is underRadical = Math.pow((Math.pow(r,2)*(Math.pow(m,2)+1)),2)-Math.pow(b,2));

but:

under Radical = Math.pow(r,2)*(Math.pow(m,2)+1)) - Math.pow(b,2);

在最后的坐标中,他忘记把解移回来。所以不是:

var i1 = {x:t1,y:m*t1+b}

but:

Var i1 = {x:t1+c。x, y: m * t1 + b +陈守惠};

整个函数就变成:

function interceptOnCircle(p1, p2, c, r) {
    //p1 is the first line point
    //p2 is the second line point
    //c is the circle's center
    //r is the circle's radius

    var p3 = {x:p1.x - c.x, y:p1.y - c.y}; //shifted line points
    var p4 = {x:p2.x - c.x, y:p2.y - c.y};

    var m = (p4.y - p3.y) / (p4.x - p3.x); //slope of the line
    var b = p3.y - m * p3.x; //y-intercept of line

    var underRadical = Math.pow(r,2)*Math.pow(m,2) + Math.pow(r,2) - Math.pow(b,2); //the value under the square root sign 

    if (underRadical < 0) {
        //line completely missed
        return false;
    } else {
        var t1 = (-m*b + Math.sqrt(underRadical))/(Math.pow(m,2) + 1); //one of the intercept x's
        var t2 = (-m*b - Math.sqrt(underRadical))/(Math.pow(m,2) + 1); //other intercept's x
        var i1 = {x:t1+c.x, y:m*t1+b+c.y}; //intercept point 1
        var i2 = {x:t2+c.x, y:m*t2+b+c.y}; //intercept point 2
        return [i1, i2];
    }
}

如果你找到了圆心(因为它是3D的,我想你是指球体而不是圆)和直线之间的距离,然后检查这个距离是否小于可以做到这一点的半径。

碰撞点显然是直线和球面之间最近的点(当你计算球面和直线之间的距离时,会计算出这个点)

点与线之间的距离: http://mathworld.wolfram.com/Point-LineDistance3-Dimensional.html

You can find a point on a infinite line that is nearest to circle center by projecting vector AC onto vector AB. Calculate the distance between that point and circle center. If it is greater that R, there is no intersection. If the distance is equal to R, line is a tangent of the circle and the point nearest to circle center is actually the intersection point. If distance less that R, then there are 2 intersection points. They lie at the same distance from the point nearest to circle center. That distance can easily be calculated using Pythagorean theorem. Here's algorithm in pseudocode:

{
dX = bX - aX;
dY = bY - aY;
if ((dX == 0) && (dY == 0))
  {
  // A and B are the same points, no way to calculate intersection
  return;
  }

dl = (dX * dX + dY * dY);
t = ((cX - aX) * dX + (cY - aY) * dY) / dl;

// point on a line nearest to circle center
nearestX = aX + t * dX;
nearestY = aY + t * dY;

dist = point_dist(nearestX, nearestY, cX, cY);

if (dist == R)
  {
  // line segment touches circle; one intersection point
  iX = nearestX;
  iY = nearestY;

  if (t < 0 || t > 1)
    {
    // intersection point is not actually within line segment
    }
  }
else if (dist < R)
  {
  // two possible intersection points

  dt = sqrt(R * R - dist * dist) / sqrt(dl);

  // intersection point nearest to A
  t1 = t - dt;
  i1X = aX + t1 * dX;
  i1Y = aY + t1 * dY;
  if (t1 < 0 || t1 > 1)
    {
    // intersection point is not actually within line segment
    }

  // intersection point farthest from A
  t2 = t + dt;
  i2X = aX + t2 * dX;
  i2Y = aY + t2 * dY;
  if (t2 < 0 || t2 > 1)
    {
    // intersection point is not actually within line segment
    }
  }
else
  {
  // no intersection
  }
}

编辑:增加了代码来检查所找到的交点是否实际上在线段内。

我根据chmike给出的答案为iOS创建了这个函数

+ (NSArray *)intersectionPointsOfCircleWithCenter:(CGPoint)center withRadius:(float)radius toLinePoint1:(CGPoint)p1 andLinePoint2:(CGPoint)p2
{
    NSMutableArray *intersectionPoints = [NSMutableArray array];

    float Ax = p1.x;
    float Ay = p1.y;
    float Bx = p2.x;
    float By = p2.y;
    float Cx = center.x;
    float Cy = center.y;
    float R = radius;


    // compute the euclidean distance between A and B
    float LAB = sqrt( pow(Bx-Ax, 2)+pow(By-Ay, 2) );

    // compute the direction vector D from A to B
    float Dx = (Bx-Ax)/LAB;
    float Dy = (By-Ay)/LAB;

    // Now the line equation is x = Dx*t + Ax, y = Dy*t + Ay with 0 <= t <= 1.

    // compute the value t of the closest point to the circle center (Cx, Cy)
    float t = Dx*(Cx-Ax) + Dy*(Cy-Ay);

    // This is the projection of C on the line from A to B.

    // compute the coordinates of the point E on line and closest to C
    float Ex = t*Dx+Ax;
    float Ey = t*Dy+Ay;

    // compute the euclidean distance from E to C
    float LEC = sqrt( pow(Ex-Cx, 2)+ pow(Ey-Cy, 2) );

    // test if the line intersects the circle
    if( LEC < R )
    {
        // compute distance from t to circle intersection point
        float dt = sqrt( pow(R, 2) - pow(LEC,2) );

        // compute first intersection point
        float Fx = (t-dt)*Dx + Ax;
        float Fy = (t-dt)*Dy + Ay;

        // compute second intersection point
        float Gx = (t+dt)*Dx + Ax;
        float Gy = (t+dt)*Dy + Ay;

        [intersectionPoints addObject:[NSValue valueWithCGPoint:CGPointMake(Fx, Fy)]];
        [intersectionPoints addObject:[NSValue valueWithCGPoint:CGPointMake(Gx, Gy)]];
    }

    // else test if the line is tangent to circle
    else if( LEC == R ) {
        // tangent point to circle is E
        [intersectionPoints addObject:[NSValue valueWithCGPoint:CGPointMake(Ex, Ey)]];
    }
    else {
        // line doesn't touch circle
    }

    return intersectionPoints;
}