如何使一个Python类序列化?

class FileItem:
    def __init__(self, fname):
        self.fname = fname

尝试序列化为JSON:

>>> import json
>>> x = FileItem('/foo/bar')
>>> json.dumps(x)
TypeError: Object of type 'FileItem' is not JSON serializable

当前回答

基于Quinten Cabo的回答:

def sterilize(obj):
    """Make an object more ameniable to dumping as json
    """
    if type(obj) in (str, float, int, bool, type(None)):
        return obj
    elif isinstance(obj, dict):
        return {k: sterilize(v) for k, v in obj.items()}
    list_ret = []
    dict_ret = {}
    for a in dir(obj):
        if a == '__iter__' and callable(obj.__iter__):
            list_ret.extend([sterilize(v) for v in obj])
        elif a == '__dict__':
            dict_ret.update({k: sterilize(v) for k, v in obj.__dict__.items() if k not in ['__module__', '__dict__', '__weakref__', '__doc__']})
        elif a not in ['__doc__', '__module__']:
            aval = getattr(obj, a)
            if type(aval) in (str, float, int, bool, type(None)):
                dict_ret[a] = aval
            elif a != '__class__' and a != '__objclass__' and isinstance(aval, type):
                dict_ret[a] = sterilize(aval)
    if len(list_ret) == 0:
        if len(dict_ret) == 0:
            return repr(obj)
        return dict_ret
    else:
        if len(dict_ret) == 0:
            return list_ret
    return (list_ret, dict_ret)

区别在于

Works for any iterable instead of just list and tuple (it works for NumPy arrays, etc.) Works for dynamic types (ones that contain a __dict__). Includes native types float and None so they don't get converted to string. Classes that have __dict__ and members will mostly work (if the __dict__ and member names collide, you will only get one - likely the member) Classes that are lists and have members will look like a tuple of the list and a dictionary Python3 (that isinstance() call may be the only thing that needs changing)

其他回答

这是我的3美分… 这演示了一个树状python对象的显式json序列化。 注意:如果你真的想要这样的代码,你可以使用twisted FilePath类。

import json, sys, os

class File:
    def __init__(self, path):
        self.path = path

    def isdir(self):
        return os.path.isdir(self.path)

    def isfile(self):
        return os.path.isfile(self.path)

    def children(self):        
        return [File(os.path.join(self.path, f)) 
                for f in os.listdir(self.path)]

    def getsize(self):        
        return os.path.getsize(self.path)

    def getModificationTime(self):
        return os.path.getmtime(self.path)

def _default(o):
    d = {}
    d['path'] = o.path
    d['isFile'] = o.isfile()
    d['isDir'] = o.isdir()
    d['mtime'] = int(o.getModificationTime())
    d['size'] = o.getsize() if o.isfile() else 0
    if o.isdir(): d['children'] = o.children()
    return d

folder = os.path.abspath('.')
json.dump(File(folder), sys.stdout, default=_default)

这个函数使用递归迭代遍历字典的每个部分,然后调用非内置类型类的repr()方法。

def sterilize(obj):
    object_type = type(obj)
    if isinstance(obj, dict):
        return {k: sterilize(v) for k, v in obj.items()}
    elif object_type in (list, tuple):
        return [sterilize(v) for v in obj]
    elif object_type in (str, int, bool, float):
        return obj
    else:
        return obj.__repr__()

你知道预期产量是多少吗?例如,这个可以吗?

>>> f  = FileItem("/foo/bar")
>>> magic(f)
'{"fname": "/foo/bar"}'

在这种情况下,你只需调用json.dumps(f.__dict__)。

如果您想要更多自定义输出,那么您必须继承JSONEncoder并实现您自己的自定义序列化。

对于一个简单的例子,请参见下面。

>>> from json import JSONEncoder
>>> class MyEncoder(JSONEncoder):
        def default(self, o):
            return o.__dict__    

>>> MyEncoder().encode(f)
'{"fname": "/foo/bar"}'

然后你把这个类作为cls kwarg传递给json.dumps()方法:

json.dumps(cls=MyEncoder)

如果还想解码,则必须向JSONDecoder类提供一个自定义object_hook。例如:

>>> def from_json(json_object):
        if 'fname' in json_object:
            return FileItem(json_object['fname'])
>>> f = JSONDecoder(object_hook = from_json).decode('{"fname": "/foo/bar"}')
>>> f
<__main__.FileItem object at 0x9337fac>
>>> 
class DObject(json.JSONEncoder):
    def delete_not_related_keys(self, _dict):
        for key in ["skipkeys", "ensure_ascii", "check_circular", "allow_nan", "sort_keys", "indent"]:
            try:
                del _dict[key]
            except:
                continue

    def default(self, o):
        if hasattr(o, '__dict__'):
            my_dict = o.__dict__.copy()
            self.delete_not_related_keys(my_dict)
            return my_dict
        else:
            return o

a = DObject()
a.name = 'abdul wahid'
b = DObject()
b.name = a

print(json.dumps(b, cls=DObject))

一个非常简单的一行程序解决方案

import json

json.dumps(your_object, default=lambda __o: __o.__dict__)

结束!

下面是一个测试。

import json
from dataclasses import dataclass


@dataclass
class Company:
    id: int
    name: str

@dataclass
class User:
    id: int
    name: str
    email: str
    company: Company


company = Company(id=1, name="Example Ltd")
user = User(id=1, name="John Doe", email="john@doe.net", company=company)


json.dumps(user, default=lambda __o: __o.__dict__)

输出:

{
  "id": 1, 
  "name": "John Doe", 
  "email": "john@doe.net", 
  "company": {
    "id": 1, 
    "name": "Example Ltd"
  }
}